4cyh Citations

Mechanistic implication of crystal structures of the cyclophilin-dipeptide complexes.

Biochemistry 35 7362-8 (1996)
Related entries: 2cyh, 3cyh, 5cyh

Cited: 37 times
EuropePMC logo PMID: 8652512

Abstract

The structures of cyclophilin A complexed with dipeptides of Ser-Pro, His-Pro, and Gly-Pro have been determined and refined at high resolution. Comparison of these structures revealed that the dipeptide complexes have the same molecular conformation and the same binding of the dipeptides. The side chains of the N-terminal amino acid of the above dipeptides do not strongly interact with cyclophilin, implying their minor contribution to the cis-trans isomerization and thus accounting for the broad catalytic specificity of the enzyme. The binding of the dipeptides is similar to that of the common substrate succinyl-Ala-Ala-Pro-Phe-p-nitroanilide in terms of the N-terminal hydrogen bonding and the hydrophobic interaction of the proline side chain. However, substantial difference between these structures are observed in (1) hydrogen bonding between the carboxyl terminus of the peptides and Arg55 and between Arg55 and Gln63, (2) the side chain conformation of Arg55, and (3) water binding at the active site. These differences imply either that dipeptides are not substrates but competitive inhibitors of peptidyl-prolyl cis-trans isomerases or that dipeptides are subject to different catalytic mechanisms from tetrapeptides.

Reviews citing this publication (2)

  1. Immunophilins: switched on protein binding domains? Ivery MT. Med Res Rev 20 452-484 (2000)
  2. Peptidyl-prolyl isomerase inhibitors. Wang XJ, Etzkorn FA. Biopolymers 84 125-146 (2006)

Articles citing this publication (35)

  1. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP. Cell 87 1285-1294 (1996)
  2. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. Yoo S, Myszka DG, Yeh C, McMurray M, Hill CP, Sundquist WI. J Mol Biol 269 780-795 (1997)
  3. Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B. Hanoulle X, Badillo A, Wieruszeski JM, Verdegem D, Landrieu I, Bartenschlager R, Penin F, Lippens G. J Biol Chem 284 13589-13601 (2009)
  4. Structural insights into the catalytic mechanism of cyclophilin A. Howard BR, Vajdos FF, Li S, Sundquist WI, Hill CP. Nat Struct Biol 10 475-481 (2003)
  5. Stereospecific interactions of proline residues in protein structures and complexes. Bhattacharyya R, Chakrabarti P. J Mol Biol 331 925-940 (2003)
  6. Enzymes: An integrated view of structure, dynamics and function. Agarwal PK. Microb Cell Fact 5 2 (2006)
  7. Cyclophilin A complexed with a fragment of HIV-1 gag protein: insights into HIV-1 infectious activity. Zhao Y, Chen Y, Schutkowski M, Fischer G, Ke H. Structure 5 139-146 (1997)
  8. Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding. Huai Q, Wang H, Zhang W, Colman RW, Robinson H, Ke H. Proc Natl Acad Sci U S A 101 9624-9629 (2004)
  9. The NMR solution conformation of unligated human cyclophilin A. Ottiger M, Zerbe O, Güntert P, Wüthrich K. J Mol Biol 272 64-81 (1997)
  10. In vitro assembly properties of wild-type and cyclophilin-binding defective human immunodeficiency virus capsid proteins in the presence and absence of cyclophilin A. Grättinger M, Hohenberg H, Thomas D, Wilk T, Müller B, Kräusslich HG. Virology 257 247-260 (1999)
  11. Analysis of the cross-reactivity and of the 1.5 A crystal structure of the Malassezia sympodialis Mala s 6 allergen, a member of the cyclophilin pan-allergen family. Glaser AG, Limacher A, Flückiger S, Scheynius A, Scapozza L, Crameri R. Biochem J 396 41-49 (2006)
  12. Engineering cyclophilin into a proline-specific endopeptidase. Quéméneur E, Moutiez M, Charbonnier JB, Ménez A. Nature 391 301-304 (1998)
  13. Kinetics of paused ribosome recycling in Escherichia coli. Janssen BD, Hayes CS. J Mol Biol 394 251-267 (2009)
  14. The three-dimensional structure of a Plasmodium falciparum cyclophilin in complex with the potent anti-malarial cyclosporin A. Peterson MR, Hall DR, Berriman M, Nunes JA, Leonard GA, Fairlamb AH, Hunter WN. J Mol Biol 298 123-133 (2000)
  15. Characterizing and controlling the inherent dynamics of cyclophilin-A. Schlegel J, Armstrong GS, Redzic JS, Zhang F, Eisenmesser EZ. Protein Sci 18 811-824 (2009)
  16. Structural, biochemical, and in vivo characterization of the first virally encoded cyclophilin from the Mimivirus. Thai V, Renesto P, Fowler CA, Brown DJ, Davis T, Gu W, Pollock DD, Kern D, Raoult D, Eisenmesser EZ. J Mol Biol 378 71-86 (2008)
  17. Catalytic mechanism of cyclophilin as observed in molecular dynamics simulations: pathway prediction and reconciliation of X-ray crystallographic and NMR solution data. Trzesniak D, van Gunsteren WF. Protein Sci 15 2544-2551 (2006)
  18. Cyclophilin active site mutants have native prolyl isomerase activity with a protein substrate. Scholz C, Schindler T, Dolinski K, Heitman J, Schmid FX. FEBS Lett 414 69-73 (1997)
  19. The Molecular Basis of the Interaction of Cyclophilin A with α-Synuclein. Favretto F, Baker JD, Strohäker T, Andreas LB, Blair LJ, Becker S, Zweckstetter M. Angew Chem Int Ed Engl 59 5643-5646 (2020)
  20. The cisproline(i - 1)-aromatic(i) interaction: folding of the Ala-cisPro-Tyr peptide characterized by NMR and theoretical approaches. Nardi F, Kemmink J, Sattler M, Wade RC. J Biomol NMR 17 63-77 (2000)
  21. Structural and biological characterisation of the gut-associated cyclophilin B isoforms from Caenorhabditis elegans. Picken NC, Eschenlauer S, Taylor P, Page AP, Walkinshaw MD. J Mol Biol 322 15-25 (2002)
  22. Antibody catalysis of peptidyl-prolyl cis-trans isomerization in the folding of RNase T1. Ma L, Hsieh-Wilson LC, Schultz PG. Proc Natl Acad Sci U S A 95 7251-7256 (1998)
  23. Interaction of human cyclophilin hCyp-18 with short peptides suggests the existence of two functionally independent subsites. Demange L, Moutiez M, Vaudry K, Dugave C. FEBS Lett 505 191-195 (2001)
  24. A nonessential role for Arg 55 in cyclophilin18 for catalysis of proline isomerization during protein folding. Moparthi SB, Hammarström P, Carlsson U. Protein Sci 18 475-479 (2009)
  25. Proline/arginine dipeptide repeat polymers derail protein folding in amyotrophic lateral sclerosis. Babu M, Favretto F, de Opakua AI, Rankovic M, Becker S, Zweckstetter M. Nat Commun 12 3396 (2021)
  26. 1.88 A crystal structure of the C domain of hCyP33: a novel domain of peptidyl-prolyl cis-trans isomerase. Wang T, Yun CH, Gu SY, Chang WR, Liang DC. Biochem Biophys Res Commun 333 845-849 (2005)
  27. Experimental determination of van der waals energies in a biological system. Wear MA, Kan D, Rabu A, Walkinshaw MD. Angew Chem Int Ed Engl 46 6453-6456 (2007)
  28. The First Direct Determination of a Ligand Binding Constant in Protein Crystals. Wu Sy, Dornan J, Kontopidis G, Taylor P, Walkinshaw MD. Angew Chem Int Ed Engl 40 582-586 (2001)
  29. A molecular dynamics study of Cyclophilin A free and in complex with the Ala-Pro dipeptide. Mark P, Nilsson L. Eur Biophys J 36 213-224 (2007)
  30. Design and synthesis of conformationally constrained cyclophilin inhibitors showing a cyclosporin-A phenotype in C. elegans. Dunsmore CJ, Malone KJ, Bailey KR, Wear MA, Florance H, Shirran S, Barran PE, Page AP, Walkinshaw MD, Turner NJ. Chembiochem 12 802-810 (2011)
  31. Enzyme activity and structural features of three single-domain phloem cyclophilins from Brassica napus. Hanhart P, Falke S, Garbe M, Rose V, Thieß M, Betzel C, Kehr J. Sci Rep 9 9368 (2019)
  32. Unfolding of CPR3 Gets Initiated at the Active Site and Proceeds via Two Intermediates. Shukla VK, Singh JS, Vispute N, Ahmad B, Kumar A, Hosur RV. Biophys J 112 605-619 (2017)
  33. Structure of a bacterial cytoplasmic cyclophilin A in complex with a tetrapeptide. Christoforides E, Dimou M, Katinakis P, Bethanis K, Karpusas M. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 259-264 (2012)
  34. Discovery of novel low-molecular-weight HIV-1 inhibitors interacting with cyclophilin A using in silico screening and biological evaluations. Tian YS, Verathamjamras C, Kawashita N, Okamoto K, Yasunaga T, Ikuta K, Kameoka M, Takagi T. J Mol Model 19 465-475 (2013)
  35. NMR assignments of mitochondrial cyclophilin Cpr3 from Saccharomyces cerevisiae. Shukla VK, Singh JS, Trivedi D, Hosur RV, Kumar A. Biomol NMR Assign 10 203-206 (2016)