4d9j Citations

Structure of a 16-nm cage designed by using protein oligomers.

Science 336 1129 (2012)
Cited: 136 times
EuropePMC logo PMID: 22654051

Abstract

Designing protein molecules that will assemble into various kinds of ordered materials represents an important challenge in nanotechnology. We report the crystal structure of a 12-subunit protein cage that self-assembles by design to form a tetrahedral structure roughly 16 nanometers in diameter. The strategy of fusing together oligomeric protein domains can be generalized to produce other kinds of cages or extended materials.

Reviews - 4d9j mentioned but not cited (2)

  1. Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. Gradišar H, Jerala R. J Nanobiotechnology 12 4 (2014)
  2. Strategies to control the binding mode of de novo designed protein interactions. Der BS, Kuhlman B. Curr Opin Struct Biol 23 639-646 (2013)

Articles - 4d9j mentioned but not cited (3)

  1. Designing and defining dynamic protein cage nanoassemblies in solution. Lai YT, Hura GL, Dyer KN, Tang HY, Tainer JA, Yeates TO. Sci Adv 2 e1501855 (2016)
  2. Catalytic and structural properties of pheophytinase, the phytol esterase involved in chlorophyll breakdown. Guyer L, Salinger K, Krügel U, Hörtensteiner S. J Exp Bot 69 879-889 (2018)
  3. Crystal Structure of StnA for the Biosynthesis of Antitumor Drug Streptonigrin Reveals a Unique Substrate Binding Mode. Qian T, Wo J, Zhang Y, Song Q, Feng G, Luo R, Lin S, Wu G, Chen HF. Sci Rep 7 40254 (2017)


Reviews citing this publication (42)

  1. Structural DNA nanotechnology: state of the art and future perspective. Zhang F, Nangreave J, Liu Y, Yan H. J Am Chem Soc 136 11198-11211 (2014)
  2. Advances in protein structure prediction and design. Kuhlman B, Bradley P. Nat Rev Mol Cell Biol 20 681-697 (2019)
  3. Self-assembling protein nanoparticles in the design of vaccines. López-Sagaseta J, Malito E, Rappuoli R, Bottomley MJ. Comput Struct Biotechnol J 14 58-68 (2016)
  4. Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy. Abbas M, Zou Q, Li S, Yan X. Adv Mater 29 (2017)
  5. De novo protein design: how do we expand into the universe of possible protein structures? Woolfson DN, Bartlett GJ, Burton AJ, Heal JW, Niitsu A, Thomson AR, Wood CW. Curr Opin Struct Biol 33 16-26 (2015)
  6. Bioengineered protein-based nanocage for drug delivery. Lee EJ, Lee NK, Kim IS. Adv Drug Deliv Rev 106 157-171 (2016)
  7. Protein-based antigen presentation platforms for nanoparticle vaccines. Nguyen B, Tolia NH. NPJ Vaccines 6 70 (2021)
  8. Trendspotting in the Protein Data Bank. Berman HM, Coimbatore Narayanan B, Di Costanzo L, Dutta S, Ghosh S, Hudson BP, Lawson CL, Peisach E, Prlić A, Rose PW, Shao C, Yang H, Young J, Zardecki C. FEBS Lett 587 1036-1045 (2013)
  9. Practical approaches to designing novel protein assemblies. King NP, Lai YT. Curr Opin Struct Biol 23 632-638 (2013)
  10. Geometric Principles for Designing Highly Symmetric Self-Assembling Protein Nanomaterials. Yeates TO. Annu Rev Biophys 46 23-42 (2017)
  11. Coiled coil protein origami: from modular design principles towards biotechnological applications. Lapenta F, Aupič J, Strmšek Ž, Jerala R. Chem Soc Rev 47 3530-3542 (2018)
  12. Protein cage assembly across multiple length scales. Aumiller WM, Uchida M, Douglas T. Chem Soc Rev 47 3433-3469 (2018)
  13. The design of symmetric protein nanomaterials comes of age in theory and practice. Yeates TO, Liu Y, Laniado J. Curr Opin Struct Biol 39 134-143 (2016)
  14. Hemoprotein-based supramolecular assembling systems. Oohora K, Hayashi T. Curr Opin Chem Biol 19 154-161 (2014)
  15. Synthetic approaches to construct viral capsid-like spherical nanomaterials. Matsuura K. Chem Commun (Camb) 54 8944-8959 (2018)
  16. Computational design of protein self-assembly. Norn CH, André I. Curr Opin Struct Biol 39 39-45 (2016)
  17. Protein Assemblies: Nature-Inspired and Designed Nanostructures. Hamley IW. Biomacromolecules 20 1829-1848 (2019)
  18. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks. Kobayashi N, Arai R. Curr Opin Biotechnol 46 57-65 (2017)
  19. Expanding coordination chemistry from protein to protein assembly. Sanghamitra NJ, Ueno T. Chem Commun (Camb) 49 4114-4126 (2013)
  20. Self-assembled two-dimensional protein arrays in bionanotechnology: from S-layers to designed lattices. Baneyx F, Matthaei JF. Curr Opin Biotechnol 28 39-45 (2014)
  21. Protein Assembly by Design. Zhu J, Avakyan N, Kakkis A, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Chem Rev 121 13701-13796 (2021)
  22. Natural and artificial protein cages: design, structure and therapeutic applications. Heddle JG, Chakraborti S, Iwasaki K. Curr Opin Struct Biol 43 148-155 (2017)
  23. Recombinant protein materials for bioengineering and nanomedicine. Corchero JL, Vázquez E, García-Fruitós E, Ferrer-Miralles N, Villaverde A. Nanomedicine (Lond) 9 2817-2828 (2014)
  24. Design and designability of protein-based assemblies. Zhang J, Zheng F, Grigoryan G. Curr Opin Struct Biol 27 79-86 (2014)
  25. New designed protein assemblies. Božič S, Doles T, Gradišar H, Jerala R. Curr Opin Chem Biol 17 940-945 (2013)
  26. Self-Assembly of Functional Discrete Three-Dimensional Architectures in Water. Taylor LLK, Riddell IA, Smulders MMJ. Angew Chem Int Ed Engl 58 1280-1307 (2019)
  27. Constructing arrays of proteins. Sinclair JC. Curr Opin Chem Biol 17 946-951 (2013)
  28. Hierarchical design of artificial proteins and complexes toward synthetic structural biology. Arai R. Biophys Rev 10 391-410 (2018)
  29. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. Habibi N, Mauser A, Ko Y, Lahann J. Adv Sci (Weinh) 9 e2104012 (2022)
  30. Structure-based design of novel polyhedral protein nanomaterials. Khmelinskaia A, Wargacki A, King NP. Curr Opin Microbiol 61 51-57 (2021)
  31. Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications. van Rijn P, Schirhagl R. Adv Healthc Mater 5 1386-1400 (2016)
  32. Development of imaging scaffolds for cryo-electron microscopy. Yeates TO, Agdanowski MP, Liu Y. Curr Opin Struct Biol 60 142-149 (2020)
  33. Protein Calligraphy: A New Concept Begins To Take Shape. Glover DJ, Clark DS. ACS Cent Sci 2 438-444 (2016)
  34. Protein Design: From the Aspect of Water Solubility and Stability. Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Chem Rev 122 14085-14179 (2022)
  35. TOPOFOLD, the designed modular biomolecular folds: polypeptide-based molecular origami nanostructures following the footsteps of DNA. Kočar V, Božič Abram S, Doles T, Bašić N, Gradišar H, Pisanski T, Jerala R. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7 218-237 (2015)
  36. Artificial Organelles: Towards Adding or Restoring Intracellular Activity. Oerlemans RAJF, Timmermans SBPE, van Hest JCM. Chembiochem 22 2051-2078 (2021)
  37. Nanoreactor Design Based on Self-Assembling Protein Nanocages. Ren H, Zhu S, Zheng G. Int J Mol Sci 20 E592 (2019)
  38. Artificial supramolecular protein assemblies as functional high-order protein scaffolds. Kim YN, Jung Y. Org Biomol Chem 14 5352-5356 (2016)
  39. A silk purse from a sow's ear-bioinspired materials based on α-helical coiled coils. Quinlan RA, Bromley EH, Pohl E. Curr Opin Cell Biol 32 131-137 (2015)
  40. Creating de novo peptide-based bioactivities: from assembly to origami. Ma Y, Li X, Zhao R, Wu E, Du Q, Guo J, Wang L, Zhang F. RSC Adv 12 25955-25961 (2022)
  41. Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications. João J, Prazeres DMF. Front Bioeng Biotechnol 11 1200729 (2023)
  42. [Structure and Self-assembly of Negatively Supercharged Protein Cages]. Sasaki E, Hilvert D. Yakugaku Zasshi 139 199-208 (2019)

Articles citing this publication (89)

  1. Accurate design of co-assembling multi-component protein nanomaterials. King NP, Bale JB, Sheffler W, McNamara DE, Gonen S, Gonen T, Yeates TO, Baker D. Nature 510 103-108 (2014)
  2. Accurate design of megadalton-scale two-component icosahedral protein complexes. Bale JB, Gonen S, Liu Y, Sheffler W, Ellis D, Thomas C, Cascio D, Yeates TO, Gonen T, King NP, Baker D. Science 353 389-394 (2016)
  3. Self-assembling cages from coiled-coil peptide modules. Fletcher JM, Harniman RL, Barnes FR, Boyle AL, Collins A, Mantell J, Sharp TH, Antognozzi M, Booth PJ, Linden N, Miles MJ, Sessions RB, Verkade P, Woolfson DN. Science 340 595-599 (2013)
  4. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Gradišar H, Božič S, Doles T, Vengust D, Hafner-Bratkovič I, Mertelj A, Webb B, Šali A, Klavžar S, Jerala R. Nat Chem Biol 9 362-366 (2013)
  5. Protein complexes are under evolutionary selection to assemble via ordered pathways. Marsh JA, Hernández H, Hall Z, Ahnert SE, Perica T, Robinson CV, Teichmann SA. Cell 153 461-470 (2013)
  6. Structure of a designed protein cage that self-assembles into a highly porous cube. Lai YT, Reading E, Hura GL, Tsai KL, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO. Nat Chem 6 1065-1071 (2014)
  7. Principles of assembly reveal a periodic table of protein complexes. Ahnert SE, Marsh JA, Hernández H, Robinson CV, Teichmann SA. Science 350 aaa2245 (2015)
  8. Proteins evolve on the edge of supramolecular self-assembly. Garcia-Seisdedos H, Empereur-Mot C, Elad N, Levy ED. Nature 548 244-247 (2017)
  9. Self-assembly. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Huang M, Hsu CH, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang WB, Yue K, Cheng SZ. Science 348 424-428 (2015)
  10. Computational design of a self-assembling symmetrical β-propeller protein. Voet AR, Noguchi H, Addy C, Simoncini D, Terada D, Unzai S, Park SY, Zhang KY, Tame JR. Proc Natl Acad Sci U S A 111 15102-15107 (2014)
  11. Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation. Collie GW, Pulka-Ziach K, Lombardo CM, Fremaux J, Rosu F, Decossas M, Mauran L, Lambert O, Gabelica V, Mackereth CD, Guichard G. Nat Chem 7 871-878 (2015)
  12. Designing two self-assembly mechanisms into one viral capsid protein. van Eldijk MB, Wang JC, Minten IJ, Li C, Zlotnick A, Nolte RJ, Cornelissen JJ, van Hest JC. J Am Chem Soc 134 18506-18509 (2012)
  13. Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Brodin JD, Carr JR, Sontz PA, Tezcan FA. Proc Natl Acad Sci U S A 111 2897-2902 (2014)
  14. Structure and flexibility of nanoscale protein cages designed by symmetric self-assembly. Lai YT, Tsai KL, Sawaya MR, Asturias FJ, Yeates TO. J Am Chem Soc 135 7738-7743 (2013)
  15. Bacterial microcompartment shells of diverse functional types possess pentameric vertex proteins. Wheatley NM, Gidaniyan SD, Liu Y, Cascio D, Yeates TO. Protein Sci 22 660-665 (2013)
  16. Structure and assembly of scalable porous protein cages. Sasaki E, Böhringer D, van de Waterbeemd M, Leibundgut M, Zschoche R, Heck AJ, Ban N, Hilvert D. Nat Commun 8 14663 (2017)
  17. Flexible, symmetry-directed approach to assembling protein cages. Sciore A, Su M, Koldewey P, Eschweiler JD, Diffley KA, Linhares BM, Ruotolo BT, Bardwell JC, Skiniotis G, Marsh EN. Proc Natl Acad Sci U S A 113 8681-8686 (2016)
  18. Computational design of co-assembling protein-DNA nanowires. Mou Y, Yu JY, Wannier TM, Guo CL, Mayo SL. Nature 525 230-233 (2015)
  19. Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. Liu Y, Gonen S, Gonen T, Yeates TO. Proc Natl Acad Sci U S A 115 3362-3367 (2018)
  20. Constructing protein polyhedra via orthogonal chemical interactions. Golub E, Subramanian RH, Esselborn J, Alberstein RG, Bailey JB, Chiong JA, Yan X, Booth T, Baker TS, Tezcan FA. Nature 578 172-176 (2020)
  21. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Kim YE, Kim YN, Kim JA, Kim HM, Jung Y. Nat Commun 6 7134 (2015)
  22. Dynamic formation of hybrid peptidic capsules by chiral self-sorting and self-assembly. Jędrzejewska H, Wierzbicki M, Cmoch P, Rissanen K, Szumna A. Angew Chem Int Ed Engl 53 13760-13764 (2014)
  23. Multiple Pathways in Capsid Assembly. Lutomski CA, Lyktey NA, Pierson EE, Zhao Z, Zlotnick A, Jarrold MF. J Am Chem Soc 140 5784-5790 (2018)
  24. Reprogramming an ATP-driven protein machine into a light-gated nanocage. Hoersch D, Roh SH, Chiu W, Kortemme T. Nat Nanotechnol 8 928-932 (2013)
  25. In vitro and cellular self-assembly of a Zn-binding protein cryptand via templated disulfide bonds. Medina-Morales A, Perez A, Brodin JD, Tezcan FA. J Am Chem Soc 135 12013-12022 (2013)
  26. Structural and evolutionary versatility in protein complexes with uneven stoichiometry. Marsh JA, Rees HA, Ahnert SE, Teichmann SA. Nat Commun 6 6394 (2015)
  27. Supercharging enables organized assembly of synthetic biomolecules. Simon AJ, Zhou Y, Ramasubramani V, Glaser J, Pothukuchy A, Gollihar J, Gerberich JC, Leggere JC, Morrow BR, Jung C, Glotzer SC, Taylor DW, Ellington AD. Nat Chem 11 204-212 (2019)
  28. Resilin-based Materials for Biomedical Applications. Li L, Kiick KL. ACS Macro Lett 2 635-640 (2013)
  29. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Coscia F, Estrozi LF, Hans F, Malet H, Noirclerc-Savoye M, Schoehn G, Petosa C. Sci Rep 6 30909 (2016)
  30. Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Jorda J, Leibly DJ, Thompson MC, Yeates TO. Chem Commun (Camb) 52 5041-5044 (2016)
  31. Self-Assembly of Proteins: Towards Supramolecular Materials. Yang L, Liu A, Cao S, Putri RM, Jonkheijm P, Cornelissen JJ. Chemistry 22 15570-15582 (2016)
  32. Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability. Fraser NJ, Liu JW, Mabbitt PD, Correy GJ, Coppin CW, Lethier M, Perugini MA, Murphy JM, Oakeshott JG, Weik M, Jackson CJ. J Mol Biol 428 2359-2371 (2016)
  33. Geometrical assembly of ultrastable protein templates for nanomaterials. Glover DJ, Giger L, Kim SS, Naik RR, Clark DS. Nat Commun 7 11771 (2016)
  34. Orthogonal Halogen-Bonding-Driven 3D Supramolecular Assembly of Right-Handed Synthetic Helical Peptides. Teng P, Gray GM, Zheng M, Singh S, Li X, Wojtas L, van der Vaart A, Cai J. Angew Chem Int Ed Engl 58 7778-7782 (2019)
  35. Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering. Cannon KA, Park RU, Boyken SE, Nattermann U, Yi S, Baker D, King NP, Yeates TO. Protein Sci 29 919-929 (2020)
  36. Modular assembly of a protein nanotriangle using orthogonally interacting coiled coils. Park WM, Bedewy M, Berggren KK, Keating AE. Sci Rep 7 10577 (2017)
  37. Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression. Bale JB, Park RU, Liu Y, Gonen S, Gonen T, Cascio D, King NP, Yeates TO, Baker D. Protein Sci 24 1695-1701 (2015)
  38. Metal Ion-Induced Self-Assembly of a Multi-Responsive Block Copolypeptide into Well-Defined Nanocapsules. van Eldijk MB, Schoonen L, Cornelissen JJ, Nolte RJ, van Hest JC. Small 12 2476-2483 (2016)
  39. Spatial Multiplexing of Fluorescent Reporters for Imaging Signaling Network Dynamics. Linghu C, Johnson SL, Valdes PA, Shemesh OA, Park WM, Park D, Piatkevich KD, Wassie AT, Liu Y, An B, Barnes SA, Celiker OT, Yao CC, Yu CJ, Wang R, Adamala KP, Bear MF, Keating AE, Boyden ES. Cell 183 1682-1698.e24 (2020)
  40. Generation of ordered protein assemblies using rigid three-body fusion. Vulovic I, Yao Q, Park YJ, Courbet A, Norris A, Busch F, Sahasrabuddhe A, Merten H, Sahtoe DD, Ueda G, Fallas JA, Weaver SJ, Hsia Y, Langan RA, Plückthun A, Wysocki VH, Veesler D, Jensen GJ, Baker D. Proc Natl Acad Sci U S A 118 e2015037118 (2021)
  41. Kinetic constraints on self-assembly into closed supramolecular structures. Michaels TCT, Bellaiche MMJ, Hagan MF, Knowles TPJ. Sci Rep 7 12295 (2017)
  42. Rational design of heterodimeric protein using domain swapping for myoglobin. Lin YW, Nagao S, Zhang M, Shomura Y, Higuchi Y, Hirota S. Angew Chem Int Ed Engl 54 511-515 (2015)
  43. A Hollow Foldecture with Truncated Trigonal Bipyramid Shape from the Self-Assembly of an 11-Helical Foldamer. Eom JH, Gong J, Kwon S, Jeon A, Jeong R, Driver RW, Lee HS. Angew Chem Int Ed Engl 54 13204-13207 (2015)
  44. A complete rule set for designing symmetry combination materials from protein molecules. Laniado J, Yeates TO. Proc Natl Acad Sci U S A 117 31817-31823 (2020)
  45. Engineering protein assemblies with allosteric control via monomer fold-switching. Campos LA, Sharma R, Alvira S, Ruiz FM, Ibarra-Molero B, Sadqi M, Alfonso C, Rivas G, Sanchez-Ruiz JM, Romero Garrido A, Valpuesta JM, Muñoz V. Nat Commun 10 5703 (2019)
  46. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins. Valéry C, Deville-Foillard S, Lefebvre C, Taberner N, Legrand P, Meneau F, Meriadec C, Delvaux C, Bizien T, Kasotakis E, Lopez-Iglesias C, Gall A, Bressanelli S, Le Du MH, Paternostre M, Artzner F. Nat Commun 6 7771 (2015)
  47. Conversion of the Native 24-mer Ferritin Nanocage into Its Non-Native 16-mer Analogue by Insertion of Extra Amino Acid Residues. Zhang S, Zang J, Wang W, Chen H, Zhang X, Wang F, Wang H, Zhao G. Angew Chem Int Ed Engl 55 16064-16070 (2016)
  48. Designed Heme-Cage β-Sheet Miniproteins. D'Souza A, Wu X, Yeow EKL, Bhattacharjya S. Angew Chem Int Ed Engl 56 5904-5908 (2017)
  49. Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages. Zang J, Chen H, Zhang X, Zhang C, Guo J, Du M, Zhao G. Nat Commun 10 778 (2019)
  50. 2D square arrays of protein nanocages through channel-directed electrostatic interactions with poly(α, l-lysine). Yang R, Chen L, Yang S, Lv C, Leng X, Zhao G. Chem Commun (Camb) 50 2879-2882 (2014)
  51. Change in structure and ligand binding properties of hyperstable cytochrome c555 from Aquifex aeolicus by domain swapping. Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S. Protein Sci 24 366-375 (2015)
  52. Construction of novel repeat proteins with rigid and predictable structures using a shared helix method. Youn SJ, Kwon NY, Lee JH, Kim JH, Choi J, Lee H, Lee JO. Sci Rep 7 2595 (2017)
  53. Self-assembly and regulation of protein cages from pre-organised coiled-coil modules. Lapenta F, Aupič J, Vezzoli M, Strmšek Ž, Da Vela S, Svergun DI, Carazo JM, Melero R, Jerala R. Nat Commun 12 939 (2021)
  54. Complete shift of ferritin oligomerization toward nanocage assembly via engineered protein-protein interactions. Ardejani MS, Chok XL, Foo CJ, Orner BP. Chem Commun (Camb) 49 3528-3530 (2013)
  55. Computational de novo design of a self-assembling peptide with predefined structure. Kaltofen S, Li C, Huang PS, Serpell LC, Barth A, André I. J Mol Biol 427 550-562 (2015)
  56. Connecting two proteins using a fusion alpha helix stabilized by a chemical cross linker. Jeong WH, Lee H, Song DH, Eom JH, Kim SC, Lee HS, Lee H, Lee JO. Nat Commun 7 11031 (2016)
  57. Self-assembly of Ni-NTA-modified β-annulus peptides into artificial viral capsids and encapsulation of His-tagged proteins. Matsuura K, Nakamura T, Watanabe K, Noguchi T, Minamihata K, Kamiya N, Kimizuka N. Org Biomol Chem 14 7869-7874 (2016)
  58. Cages from coils. Der BS, Kuhlman B. Nat Biotechnol 31 809-810 (2013)
  59. Elaborating a coiled-coil-assembled octahedral protein cage with additional protein domains. Cristie-David AS, Koldewey P, Meinen BA, Bardwell JCA, Marsh ENG. Protein Sci 27 1893-1900 (2018)
  60. Chemically induced protein cage assembly with programmable opening and cargo release. Stupka I, Azuma Y, Biela AP, Imamura M, Scheuring S, Pyza E, Woźnicka O, Maskell DP, Heddle JG. Sci Adv 8 eabj9424 (2022)
  61. A supramolecular assembly based on an engineered hemoprotein exhibiting a thermal stimulus-driven conversion to a new distinct supramolecular structure. Oohora K, Onuma Y, Tanaka Y, Onoda A, Hayashi T. Chem Commun (Camb) 53 6879-6882 (2017)
  62. A versatile synthetic strategy for macromolecular cages: intramolecular consecutive cyclization of star-shaped polymers. Mato Y, Honda K, Tajima K, Yamamoto T, Isono T, Satoh T. Chem Sci 10 440-446 (2019)
  63. Asymmetrizing an icosahedral virus capsid by hierarchical assembly of subunits with designed asymmetry. Zhao Z, Wang JC, Zhang M, Lyktey NA, Jarrold MF, Jacobson SC, Zlotnick A. Nat Commun 12 589 (2021)
  64. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR. Zhu S, Segura T. Curr Opin Chem Eng 4 128-136 (2014)
  65. Protein nanorings organized by poly(styrene-block-ethylene oxide) self-assembled thin films. Malmström J, Wason A, Roache F, Yewdall NA, Radjainia M, Wei S, Higgins MJ, Williams DE, Gerrard JA, Travas-Sejdic J. Nanoscale 7 19940-19948 (2015)
  66. Symmetry based assembly of a 2 dimensional protein lattice. Poulos S, Agah S, Jallah N, Faham S. PLoS One 12 e0174485 (2017)
  67. Transition from disordered aggregates to ordered lattices: kinetic control of the assembly of a computationally designed peptide. Tian Y, Zhang HV, Kiick KL, Saven JG, Pochan DJ. Org Biomol Chem 15 6109-6118 (2017)
  68. Artificial Protein Cage Delivers Active Protein Cargos to the Cell Interior. Naskalska A, Borzęcka-Solarz K, Różycki J, Stupka I, Bochenek M, Pyza E, Heddle JG. Biomacromolecules 22 4146-4154 (2021)
  69. Dendrimer-Like Supramolecular Assembly of Proteins with a Tunable Size and Valency Through Stepwise Iterative Growth. Bae JH, Kim HS, Kim G, Song JJ, Kim HS. Adv Sci (Weinh) 8 e2102991 (2021)
  70. Discrete Stacked Dimers of Aromatic Oligoamide Helices. Bindl D, Mandal PK, Allmendinger L, Huc I. Angew Chem Int Ed Engl 61 e202116509 (2022)
  71. Fabrication of rigidity and space variable protein oligomers with two peptide linkers. Choi H, Park H, Son K, Kim HM, Jung Y. Chem Sci 10 10428-10435 (2019)
  72. Protein-like Nanoparticles Based on Orthogonal Self-Assembly of Chimeric Peptides. Jiang L, Xu D, Namitz KE, Cosgrove MS, Lund R, Dong H. Small 12 5126-5131 (2016)
  73. Self-assembly of the chaperonin GroEL nanocage induced at submicellar detergent. Chen J, Yagi H, Furutani Y, Nakamura T, Inaguma A, Guo H, Kong Y, Goto Y. Sci Rep 4 5614 (2014)
  74. Supracolloidal fullerene-like cages: design principles and formation mechanisms. Li ZW, Zhu YL, Lu ZY, Sun ZY. Phys Chem Chem Phys 18 32534-32540 (2016)
  75. A novel 8-nm protein cage formed by Vibrio cholerae acylphosphatase. Nath S, Banerjee R, Sen U. J Mol Biol 426 36-38 (2014)
  76. A ring-shaped hemoprotein trimer thermodynamically controlled by the supramolecular heme-heme pocket interaction. Oohora K, Kajihara R, Fujimaki N, Uchihashi T, Hayashi T. Chem Commun (Camb) 55 1544-1547 (2019)
  77. Combining a NHS ester and glutaraldehyde improves crosslinking prior to MALDI MS analysis of intact protein complexes. Boeri Erba E, Klein PA, Signor L. J Mass Spectrom 50 1114-1119 (2015)
  78. Computational Design of Single-Peptide Nanocages with Nanoparticle Templating. Villegas JA, Sinha NJ, Teramoto N, Von Bargen CD, Pochan DJ, Saven JG. Molecules 27 1237 (2022)
  79. Construction of a Triangle-Shaped Trimer and a Tetrahedron Using an α-Helix-Inserted Circular Permutant of Cytochrome c555. Oda A, Nagao S, Yamanaka M, Ueda I, Watanabe H, Uchihashi T, Shibata N, Higuchi Y, Hirota S. Chem Asian J 13 964-967 (2018)
  80. Construction of ferritin hydrogels utilizing subunit-subunit interactions. Yamanaka M, Mashima T, Ogihara M, Okamoto M, Uchihashi T, Hirota S. PLoS One 16 e0259052 (2021)
  81. Engineering Protein Self-Assembly: A New Approach for the Design of Octahedral Cages. Cougnon FB. Chembiochem 17 2296-2298 (2016)
  82. Experimental and theoretical study on converting myoglobin into a stable domain-swapped dimer by utilizing a tight hydrogen bond network at the hinge region. Xie C, Shimoyama H, Yamanaka M, Nagao S, Komori H, Shibata N, Higuchi Y, Shigeta Y, Hirota S. RSC Adv 11 37604-37611 (2021)
  83. Shape-specific nanostructured protein mimics from de novo designed chimeric peptides. Jiang L, Yang S, Lund R, Dong H. Biomater Sci 6 272-279 (2018)
  84. Conceptual, self-assembling graphene nanocontainers. Boothroyd S, Anwar J. Nanoscale 7 12104-12108 (2015)
  85. Design of metal-mediated protein assemblies via hydroxamic acid functionalities. Subramanian RH, Zhu J, Bailey JB, Chiong JA, Li Y, Golub E, Tezcan FA. Nat Protoc 16 3264-3297 (2021)
  86. Elfin UI: A Graphical Interface for Protein Design With Modular Building Blocks. Yeh CT, Obendorf L, Parmeggiani F. Front Bioeng Biotechnol 8 568318 (2020)
  87. Preparation of Cage-Like Micellar Assemblies of Engineered Hemoproteins. Oohora K, Hayashi T. Methods Mol Biol 2671 95-108 (2023)
  88. The dynamical interplay between a megadalton peptide nanocage and solutes probed by microsecond atomistic MD; implications for design. Shoemark DK, Avila Ibarra A, Ross JF, Beesley JL, Bray HEV, Mosayebi M, Linden N, Liverpool TB, McIntosh-Smith SN, Woolfson DN, Sessions RB. Phys Chem Chem Phys 21 137-147 (2018)
  89. Visualizing and accessing correlated SAXS data sets with Similarity Maps and Simple Scattering web resources. Murray DT, Shin DS, Classen S, Brosey CA, Hura GL. Methods Enzymol 678 411-440 (2023)