4d9u Citations

Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles.

Abstract

Targeting noncatalytic cysteine residues with irreversible acrylamide-based inhibitors is a powerful approach for enhancing pharmacological potency and selectivity. Nevertheless, concerns about off-target modification motivate the development of reversible cysteine-targeting strategies. Here we show that electron-deficient olefins, including acrylamides, can be tuned to react with cysteine thiols in a rapidly reversible manner. Installation of a nitrile group increased the olefins' intrinsic reactivity, but, paradoxically, eliminated the formation of irreversible adducts. Incorporation of these electrophiles into a noncovalent kinase-recognition scaffold produced slowly dissociating, covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. A cocrystal structure revealed specific noncovalent interactions that stabilize the complex by positioning the electrophilic carbon near the targeted cysteine. Disruption of these interactions by protein unfolding or proteolysis promoted instantaneous cleavage of the covalent bond. Our results establish a chemistry-based framework for engineering sustained covalent inhibition without accumulating permanently modified proteins and peptides.

Reviews - 4d9u mentioned but not cited (5)

  1. Covalent Inhibition in Drug Discovery. Ghosh AK, Samanta I, Mondal A, Liu WR. ChemMedChem 14 889-906 (2019)
  2. Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology. da Trindade R, da Silva JK, Setzer WN. Int J Mol Sci 19 E1511 (2018)
  3. Current Strategies and Applications for Precision Drug Design. Wang C, Xu P, Zhang L, Huang J, Zhu K, Luo C. Front Pharmacol 9 787 (2018)
  4. An update on the discovery and development of reversible covalent inhibitors. Faridoon, Ng R, Zhang G, Li JJ. Med Chem Res 32 1039-1062 (2023)
  5. Therapeutic targeting of p90 ribosomal S6 kinase. Wright EB, Lannigan DA. Front Cell Dev Biol 11 1297292 (2023)

Articles - 4d9u mentioned but not cited (7)



Reviews citing this publication (60)

  1. Kinase inhibitors: the road ahead. Ferguson FM, Gray NS. Nat Rev Drug Discov 17 353-377 (2018)
  2. Drugging the 'undruggable' cancer targets. Dang CV, Reddy EP, Shokat KM, Soucek L. Nat Rev Cancer 17 502-508 (2017)
  3. Developing irreversible inhibitors of the protein kinase cysteinome. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS. Chem Biol 20 146-159 (2013)
  4. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Lu MC, Ji JA, Jiang ZY, You QD. Med Res Rev 36 924-963 (2016)
  5. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Bauer RA. Drug Discov Today 20 1061-1073 (2015)
  6. Trends in kinase drug discovery: targets, indications and inhibitor design. Attwood MM, Fabbro D, Sokolov AV, Knapp S, Schiöth HB. Nat Rev Drug Discov 20 839-861 (2021)
  7. Targeted Covalent Inhibitors for Drug Design. Baillie TA. Angew Chem Int Ed Engl 55 13408-13421 (2016)
  8. Deubiquitinase inhibition as a cancer therapeutic strategy. D'Arcy P, Wang X, Linder S. Pharmacol Ther 147 32-54 (2015)
  9. Advances in covalent drug discovery. Boike L, Henning NJ, Nomura DK. Nat Rev Drug Discov 21 881-898 (2022)
  10. Quantification of thiols and disulfides. Winther JR, Thorpe C. Biochim Biophys Acta 1840 838-846 (2014)
  11. Redox Signaling by Reactive Electrophiles and Oxidants. Parvez S, Long MJC, Poganik JR, Aye Y. Chem Rev 118 8798-8888 (2018)
  12. A Perspective on the Kinetics of Covalent and Irreversible Inhibition. Strelow JM. SLAS Discov 22 3-20 (2017)
  13. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Dai S, Zhou Z, Chen Z, Xu G, Chen Y. Cells 8 E614 (2019)
  14. Covalent inhibitors design and discovery. De Cesco S, Kurian J, Dufresne C, Mittermaier AK, Moitessier N. Eur J Med Chem 138 96-114 (2017)
  15. Drug discovery considerations in the development of covalent inhibitors. Mah R, Thomas JR, Shafer CM. Bioorg Med Chem Lett 24 33-39 (2014)
  16. The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. Liu Y, Liang C, Xin L, Ren X, Tian L, Ju X, Li H, Wang Y, Zhao Q, Liu H, Cao W, Xie X, Zhang D, Wang Y, Jian Y. Eur J Med Chem 206 112711 (2020)
  17. The Cysteinome of Protein Kinases as a Target in Drug Development. Chaikuad A, Koch P, Laufer SA, Knapp S. Angew Chem Int Ed Engl 57 4372-4385 (2018)
  18. MAP kinase-interacting kinases--emerging targets against cancer. Diab S, Kumarasiri M, Yu M, Teo T, Proud C, Milne R, Wang S. Chem Biol 21 441-452 (2014)
  19. Inhibiting cancer cell hallmark features through nuclear export inhibition. Sun Q, Chen X, Zhou Q, Burstein E, Yang S, Jia D. Signal Transduct Target Ther 1 16010 (2016)
  20. The design of covalent allosteric drugs. Nussinov R, Tsai CJ. Annu Rev Pharmacol Toxicol 55 249-267 (2015)
  21. Targeting biomolecules with reversible covalent chemistry. Bandyopadhyay A, Gao J. Curr Opin Chem Biol 34 110-116 (2016)
  22. Drug discovery for a new generation of covalent drugs. Kalgutkar AS, Dalvie DK. Expert Opin Drug Discov 7 561-581 (2012)
  23. From Conception to Development: Investigating PROTACs Features for Improved Cell Permeability and Successful Protein Degradation. Cecchini C, Pannilunghi S, Tardy S, Scapozza L. Front Chem 9 672267 (2021)
  24. Target identification of biologically active small molecules via in situ methods. Su Y, Ge J, Zhu B, Zheng YG, Zhu Q, Yao SQ. Curr Opin Chem Biol 17 768-775 (2013)
  25. Lysine-Targeted Inhibitors and Chemoproteomic Probes. Cuesta A, Taunton J. Annu Rev Biochem 88 365-381 (2019)
  26. Targeting Non-Catalytic Cysteine Residues Through Structure-Guided Drug Discovery. Hallenbeck KK, Turner DM, Renslo AR, Arkin MR. Curr Top Med Chem 17 4-15 (2017)
  27. c-Jun N-terminal kinase inhibitors: a patent review (2010 - 2014). Gehringer M, Muth F, Koch P, Laufer SA. Expert Opin Ther Pat 25 849-872 (2015)
  28. Protein-ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. Bernetti M, Cavalli A, Mollica L, Mollica L. Medchemcomm 8 534-550 (2017)
  29. The Role of AP-1 Transcription Factors in Plasma Cell Biology and Multiple Myeloma Pathophysiology. Fan F, Podar K. Cancers (Basel) 13 2326 (2021)
  30. Eliminating the heart from the curcumin molecule: monocarbonyl curcumin mimics (MACs). Shetty D, Kim YJ, Shim H, Snyder JP. Molecules 20 249-292 (2014)
  31. Targeting Protein Kinases Degradation by PROTACs. Yu F, Cai M, Shao L, Zhang J. Front Chem 9 679120 (2021)
  32. Recent advances in the development of covalent inhibitors. Kim H, Hwang YS, Kim M, Park SB. RSC Med Chem 12 1037-1045 (2021)
  33. Developing Small-Molecule Inhibitors of HECT-Type Ubiquitin Ligases for Therapeutic Applications: Challenges and Opportunities. Chen D, Gehringer M, Lorenz S. Chembiochem 19 2123-2135 (2018)
  34. Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Huang F, Han X, Xiao X, Zhou J. Molecules 27 7728 (2022)
  35. Targeting protein kinases with selective and semipromiscuous covalent inhibitors. Miller RM, Taunton J. Methods Enzymol 548 93-116 (2014)
  36. Covalent Reversible Inhibitors of Cysteine Proteases Containing the Nitrile Warhead: Recent Advancement in the Field of Viral and Parasitic Diseases. Brogi S, Ibba R, Rossi S, Butini S, Calderone V, Gemma S, Campiani G. Molecules 27 2561 (2022)
  37. Covalent allosteric modulation: An emerging strategy for GPCRs drug discovery. Bian Y, Jun JJ, Cuyler J, Xie XQ. Eur J Med Chem 206 112690 (2020)
  38. Selective and Effective: Current Progress in Computational Structure-Based Drug Discovery of Targeted Covalent Inhibitors. Bianco G, Goodsell DS, Forli S. Trends Pharmacol Sci 41 1038-1049 (2020)
  39. Covalent EGFR Inhibitors: Binding Mechanisms, Synthetic Approaches, and Clinical Profiles. Hossam M, Lasheen DS, Abouzid KA. Arch Pharm (Weinheim) 349 573-593 (2016)
  40. Structural insights into redox-active cysteine residues of the Src family kinases. Heppner DE. Redox Biol 41 101934 (2021)
  41. 'Borono-lectin' based engineering as a versatile platform for biomedical applications. Matsumoto A, Miyahara Y. Sci Technol Adv Mater 19 18-30 (2018)
  42. Applications of covalent chemistry in targeted protein degradation. Lu D, Yu X, Lin H, Cheng R, Monroy EY, Qi X, Wang MC, Wang J. Chem Soc Rev 51 9243-9261 (2022)
  43. Dynamic Bonds: Adaptable Timescales for Responsive Materials. Wanasinghe SV, Dodo OJ, Konkolewicz D. Angew Chem Int Ed Engl 61 e202206938 (2022)
  44. A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Huber EM, Groll M. Cells 10 1929 (2021)
  45. Pharmacological property optimization for allosteric ligands: A medicinal chemistry perspective. Johnstone S, Albert JS. Bioorg Med Chem Lett 27 2239-2258 (2017)
  46. The Potential of Proteolytic Chimeras as Pharmacological Tools and Therapeutic Agents. Coll-Martínez B, Delgado A, Crosas B. Molecules 25 E5956 (2020)
  47. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. Kaupang Å, Hansen TV. PPAR Res 2020 9657380 (2020)
  48. Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Martelli AM, Paganelli F, Evangelisti C, Chiarini F, McCubrey JA. Cells 11 1812 (2022)
  49. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Dana D, Das T, Choi A, Bhuiyan AI, Das TK, Talele TT, Pathak SK. Molecules 27 347 (2022)
  50. Reining in BTK: Interdomain Interactions and Their Importance in the Regulatory Control of BTK. Kueffer LE, Joseph RE, Andreotti AH. Front Cell Dev Biol 9 655489 (2021)
  51. Nitriles: an attractive approach to the development of covalent inhibitors. Bonatto V, Lameiro RF, Rocho FR, Lameira J, Leitão A, Montanari CA. RSC Med Chem 14 201-217 (2023)
  52. Nuclear Export Inhibitors Selinexor (KPT-330) and Eltanexor (KPT-8602) Provide a Novel Therapy to Reduce Tumor Growth by Induction of PANoptosis. Camilli S, Lockey R, Kolliputi N. Cell Biochem Biophys 81 421-426 (2023)
  53. The emerging role of deubiquitylating enzymes as therapeutic targets in cancer metabolism. Tu R, Ma J, Zhang P, Kang Y, Xiong X, Zhu J, Li M, Zhang C. Cancer Cell Int 22 130 (2022)
  54. Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks. Berne D, Ladmiral V, Leclerc E, Caillol S. Polymers (Basel) 14 4457 (2022)
  55. Pyrrolo[2,3-d]pyrimidines active as Btk inhibitors. Musumeci F, Sanna M, Greco C, Giacchello I, Fallacara AL, Amato R, Schenone S. Expert Opin Ther Pat 27 1305-1318 (2017)
  56. Systematic Exploration of Privileged Warheads for Covalent Kinase Drug Discovery. Zhao Z, Bourne PE. Pharmaceuticals (Basel) 15 1322 (2022)
  57. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Int J Mol Sci 25 6099 (2024)
  58. Reversible Covalent Inhibition─Desired Covalent Adduct Formation by Mass Action. Patel D, Huma ZE, Duncan D. ACS Chem Biol 19 824-838 (2024)
  59. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Yang J, Tabuchi Y, Katsuki R, Taki M. Int J Mol Sci 24 3525 (2023)
  60. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Mons E, Kim RQ, Mulder MPC. Pharmaceuticals (Basel) 16 547 (2023)

Articles citing this publication (143)