4d9u Citations

Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles.

Abstract

Targeting noncatalytic cysteine residues with irreversible acrylamide-based inhibitors is a powerful approach for enhancing pharmacological potency and selectivity. Nevertheless, concerns about off-target modification motivate the development of reversible cysteine-targeting strategies. Here we show that electron-deficient olefins, including acrylamides, can be tuned to react with cysteine thiols in a rapidly reversible manner. Installation of a nitrile group increased the olefins' intrinsic reactivity, but, paradoxically, eliminated the formation of irreversible adducts. Incorporation of these electrophiles into a noncovalent kinase-recognition scaffold produced slowly dissociating, covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. A cocrystal structure revealed specific noncovalent interactions that stabilize the complex by positioning the electrophilic carbon near the targeted cysteine. Disruption of these interactions by protein unfolding or proteolysis promoted instantaneous cleavage of the covalent bond. Our results establish a chemistry-based framework for engineering sustained covalent inhibition without accumulating permanently modified proteins and peptides.

Reviews - 4d9u mentioned but not cited (5)

  1. Covalent Inhibition in Drug Discovery. Ghosh AK, Samanta I, Mondal A, Liu WR. ChemMedChem 14 889-906 (2019)
  2. Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology. da Trindade R, da Silva JK, Setzer WN. Int J Mol Sci 19 E1511 (2018)
  3. Current Strategies and Applications for Precision Drug Design. Wang C, Xu P, Zhang L, Huang J, Zhu K, Luo C. Front Pharmacol 9 787 (2018)
  4. An update on the discovery and development of reversible covalent inhibitors. Faridoon, Ng R, Zhang G, Li JJ. Med Chem Res 32 1039-1062 (2023)
  5. Therapeutic targeting of p90 ribosomal S6 kinase. Wright EB, Lannigan DA. Front Cell Dev Biol 11 1297292 (2023)

Articles - 4d9u mentioned but not cited (7)

  1. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Serafimova IM, Pufall MA, Krishnan S, Duda K, Cohen MS, Maglathlin RL, McFarland JM, Miller RM, Frödin M, Taunton J. Nat Chem Biol 8 471-476 (2012)
  2. Covalent docking of large libraries for the discovery of chemical probes. London N, Miller RM, Krishnan S, Uchida K, Irwin JJ, Eidam O, Gibold L, Cimermančič P, Bonnet R, Shoichet BK, Taunton J. Nat Chem Biol 10 1066-1072 (2014)
  3. Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. Krishnan S, Miller RM, Tian B, Mullins RD, Jacobson MP, Taunton J. J Am Chem Soc 136 12624-12630 (2014)
  4. Determining Cysteines Available for Covalent Inhibition Across the Human Kinome. Zhao Z, Liu Q, Bliven S, Xie L, Bourne PE. J Med Chem 60 2879-2889 (2017)
  5. Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinase-like UbiB Family. Reidenbach AG, Kemmerer ZA, Aydin D, Jochem A, McDevitt MT, Hutchins PD, Stark JL, Stefely JA, Reddy T, Hebert AS, Wilkerson EM, Johnson IE, Bingman CA, Markley JL, Coon JJ, Dal Peraro M, Pagliarini DJ. Cell Chem Biol 25 154-165.e11 (2018)
  6. RSK1 vs. RSK2 Inhibitory Activity of the Marine β-Carboline Alkaloid Manzamine A: A Biochemical, Cervical Cancer Protein Expression, and Computational Study. Mayer AMS, Hall ML, Lach J, Clifford J, Chandrasena K, Canton C, Kontoyianni M, Choo YM, Karan D, Hamann MT. Mar Drugs 19 506 (2021)
  7. Integrated Covalent Drug Design Workflow Using Site Identification by Ligand Competitive Saturation. Yu W, Weber DJ, MacKerell AD. J Chem Theory Comput 19 3007-3021 (2023)


Reviews citing this publication (60)

  1. Kinase inhibitors: the road ahead. Ferguson FM, Gray NS. Nat Rev Drug Discov 17 353-377 (2018)
  2. Drugging the 'undruggable' cancer targets. Dang CV, Reddy EP, Shokat KM, Soucek L. Nat Rev Cancer 17 502-508 (2017)
  3. Developing irreversible inhibitors of the protein kinase cysteinome. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS. Chem Biol 20 146-159 (2013)
  4. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Lu MC, Ji JA, Jiang ZY, You QD. Med Res Rev 36 924-963 (2016)
  5. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Bauer RA. Drug Discov Today 20 1061-1073 (2015)
  6. Trends in kinase drug discovery: targets, indications and inhibitor design. Attwood MM, Fabbro D, Sokolov AV, Knapp S, Schiöth HB. Nat Rev Drug Discov 20 839-861 (2021)
  7. Targeted Covalent Inhibitors for Drug Design. Baillie TA. Angew Chem Int Ed Engl 55 13408-13421 (2016)
  8. Deubiquitinase inhibition as a cancer therapeutic strategy. D'Arcy P, Wang X, Linder S. Pharmacol Ther 147 32-54 (2015)
  9. Advances in covalent drug discovery. Boike L, Henning NJ, Nomura DK. Nat Rev Drug Discov 21 881-898 (2022)
  10. Quantification of thiols and disulfides. Winther JR, Thorpe C. Biochim Biophys Acta 1840 838-846 (2014)
  11. Redox Signaling by Reactive Electrophiles and Oxidants. Parvez S, Long MJC, Poganik JR, Aye Y. Chem Rev 118 8798-8888 (2018)
  12. A Perspective on the Kinetics of Covalent and Irreversible Inhibition. Strelow JM. SLAS Discov 22 3-20 (2017)
  13. Fibroblast Growth Factor Receptors (FGFRs): Structures and Small Molecule Inhibitors. Dai S, Zhou Z, Chen Z, Xu G, Chen Y. Cells 8 E614 (2019)
  14. Covalent inhibitors design and discovery. De Cesco S, Kurian J, Dufresne C, Mittermaier AK, Moitessier N. Eur J Med Chem 138 96-114 (2017)
  15. Drug discovery considerations in the development of covalent inhibitors. Mah R, Thomas JR, Shafer CM. Bioorg Med Chem Lett 24 33-39 (2014)
  16. The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. Liu Y, Liang C, Xin L, Ren X, Tian L, Ju X, Li H, Wang Y, Zhao Q, Liu H, Cao W, Xie X, Zhang D, Wang Y, Jian Y. Eur J Med Chem 206 112711 (2020)
  17. The Cysteinome of Protein Kinases as a Target in Drug Development. Chaikuad A, Koch P, Laufer SA, Knapp S. Angew Chem Int Ed Engl 57 4372-4385 (2018)
  18. MAP kinase-interacting kinases--emerging targets against cancer. Diab S, Kumarasiri M, Yu M, Teo T, Proud C, Milne R, Wang S. Chem Biol 21 441-452 (2014)
  19. Inhibiting cancer cell hallmark features through nuclear export inhibition. Sun Q, Chen X, Zhou Q, Burstein E, Yang S, Jia D. Signal Transduct Target Ther 1 16010 (2016)
  20. The design of covalent allosteric drugs. Nussinov R, Tsai CJ. Annu Rev Pharmacol Toxicol 55 249-267 (2015)
  21. Targeting biomolecules with reversible covalent chemistry. Bandyopadhyay A, Gao J. Curr Opin Chem Biol 34 110-116 (2016)
  22. Drug discovery for a new generation of covalent drugs. Kalgutkar AS, Dalvie DK. Expert Opin Drug Discov 7 561-581 (2012)
  23. From Conception to Development: Investigating PROTACs Features for Improved Cell Permeability and Successful Protein Degradation. Cecchini C, Pannilunghi S, Tardy S, Scapozza L. Front Chem 9 672267 (2021)
  24. Target identification of biologically active small molecules via in situ methods. Su Y, Ge J, Zhu B, Zheng YG, Zhu Q, Yao SQ. Curr Opin Chem Biol 17 768-775 (2013)
  25. Lysine-Targeted Inhibitors and Chemoproteomic Probes. Cuesta A, Taunton J. Annu Rev Biochem 88 365-381 (2019)
  26. Targeting Non-Catalytic Cysteine Residues Through Structure-Guided Drug Discovery. Hallenbeck KK, Turner DM, Renslo AR, Arkin MR. Curr Top Med Chem 17 4-15 (2017)
  27. c-Jun N-terminal kinase inhibitors: a patent review (2010 - 2014). Gehringer M, Muth F, Koch P, Laufer SA. Expert Opin Ther Pat 25 849-872 (2015)
  28. Protein-ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. Bernetti M, Cavalli A, Mollica L, Mollica L. Medchemcomm 8 534-550 (2017)
  29. The Role of AP-1 Transcription Factors in Plasma Cell Biology and Multiple Myeloma Pathophysiology. Fan F, Podar K. Cancers (Basel) 13 2326 (2021)
  30. Eliminating the heart from the curcumin molecule: monocarbonyl curcumin mimics (MACs). Shetty D, Kim YJ, Shim H, Snyder JP. Molecules 20 249-292 (2014)
  31. Targeting Protein Kinases Degradation by PROTACs. Yu F, Cai M, Shao L, Zhang J. Front Chem 9 679120 (2021)
  32. Recent advances in the development of covalent inhibitors. Kim H, Hwang YS, Kim M, Park SB. RSC Med Chem 12 1037-1045 (2021)
  33. Developing Small-Molecule Inhibitors of HECT-Type Ubiquitin Ligases for Therapeutic Applications: Challenges and Opportunities. Chen D, Gehringer M, Lorenz S. Chembiochem 19 2123-2135 (2018)
  34. Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Huang F, Han X, Xiao X, Zhou J. Molecules 27 7728 (2022)
  35. Targeting protein kinases with selective and semipromiscuous covalent inhibitors. Miller RM, Taunton J. Methods Enzymol 548 93-116 (2014)
  36. Covalent Reversible Inhibitors of Cysteine Proteases Containing the Nitrile Warhead: Recent Advancement in the Field of Viral and Parasitic Diseases. Brogi S, Ibba R, Rossi S, Butini S, Calderone V, Gemma S, Campiani G. Molecules 27 2561 (2022)
  37. Covalent allosteric modulation: An emerging strategy for GPCRs drug discovery. Bian Y, Jun JJ, Cuyler J, Xie XQ. Eur J Med Chem 206 112690 (2020)
  38. Selective and Effective: Current Progress in Computational Structure-Based Drug Discovery of Targeted Covalent Inhibitors. Bianco G, Goodsell DS, Forli S. Trends Pharmacol Sci 41 1038-1049 (2020)
  39. Covalent EGFR Inhibitors: Binding Mechanisms, Synthetic Approaches, and Clinical Profiles. Hossam M, Lasheen DS, Abouzid KA. Arch Pharm (Weinheim) 349 573-593 (2016)
  40. Structural insights into redox-active cysteine residues of the Src family kinases. Heppner DE. Redox Biol 41 101934 (2021)
  41. 'Borono-lectin' based engineering as a versatile platform for biomedical applications. Matsumoto A, Miyahara Y. Sci Technol Adv Mater 19 18-30 (2018)
  42. Applications of covalent chemistry in targeted protein degradation. Lu D, Yu X, Lin H, Cheng R, Monroy EY, Qi X, Wang MC, Wang J. Chem Soc Rev 51 9243-9261 (2022)
  43. Dynamic Bonds: Adaptable Timescales for Responsive Materials. Wanasinghe SV, Dodo OJ, Konkolewicz D. Angew Chem Int Ed Engl 61 e202206938 (2022)
  44. A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Huber EM, Groll M. Cells 10 1929 (2021)
  45. Pharmacological property optimization for allosteric ligands: A medicinal chemistry perspective. Johnstone S, Albert JS. Bioorg Med Chem Lett 27 2239-2258 (2017)
  46. The Potential of Proteolytic Chimeras as Pharmacological Tools and Therapeutic Agents. Coll-Martínez B, Delgado A, Crosas B. Molecules 25 E5956 (2020)
  47. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. Kaupang Å, Hansen TV. PPAR Res 2020 9657380 (2020)
  48. Pathobiology and Therapeutic Relevance of GSK-3 in Chronic Hematological Malignancies. Martelli AM, Paganelli F, Evangelisti C, Chiarini F, McCubrey JA. Cells 11 1812 (2022)
  49. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Dana D, Das T, Choi A, Bhuiyan AI, Das TK, Talele TT, Pathak SK. Molecules 27 347 (2022)
  50. Reining in BTK: Interdomain Interactions and Their Importance in the Regulatory Control of BTK. Kueffer LE, Joseph RE, Andreotti AH. Front Cell Dev Biol 9 655489 (2021)
  51. Nitriles: an attractive approach to the development of covalent inhibitors. Bonatto V, Lameiro RF, Rocho FR, Lameira J, Leitão A, Montanari CA. RSC Med Chem 14 201-217 (2023)
  52. Nuclear Export Inhibitors Selinexor (KPT-330) and Eltanexor (KPT-8602) Provide a Novel Therapy to Reduce Tumor Growth by Induction of PANoptosis. Camilli S, Lockey R, Kolliputi N. Cell Biochem Biophys 81 421-426 (2023)
  53. The emerging role of deubiquitylating enzymes as therapeutic targets in cancer metabolism. Tu R, Ma J, Zhang P, Kang Y, Xiong X, Zhu J, Li M, Zhang C. Cancer Cell Int 22 130 (2022)
  54. Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks. Berne D, Ladmiral V, Leclerc E, Caillol S. Polymers (Basel) 14 4457 (2022)
  55. Pyrrolo[2,3-d]pyrimidines active as Btk inhibitors. Musumeci F, Sanna M, Greco C, Giacchello I, Fallacara AL, Amato R, Schenone S. Expert Opin Ther Pat 27 1305-1318 (2017)
  56. Systematic Exploration of Privileged Warheads for Covalent Kinase Drug Discovery. Zhao Z, Bourne PE. Pharmaceuticals (Basel) 15 1322 (2022)
  57. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Int J Mol Sci 25 6099 (2024)
  58. Reversible Covalent Inhibition─Desired Covalent Adduct Formation by Mass Action. Patel D, Huma ZE, Duncan D. ACS Chem Biol 19 824-838 (2024)
  59. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Yang J, Tabuchi Y, Katsuki R, Taki M. Int J Mol Sci 24 3525 (2023)
  60. Technologies for Direct Detection of Covalent Protein-Drug Adducts. Mons E, Kim RQ, Mulder MPC. Pharmaceuticals (Basel) 16 547 (2023)

Articles citing this publication (143)

  1. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Bradshaw JM, McFarland JM, Paavilainen VO, Bisconte A, Tam D, Phan VT, Romanov S, Finkle D, Shu J, Patel V, Ton T, Li X, Loughhead DG, Nunn PA, Karr DE, Gerritsen ME, Funk JO, Owens TD, Verner E, Brameld KA, Hill RJ, Goldstein DM, Taunton J. Nat Chem Biol 11 525-531 (2015)
  2. Redox-based reagents for chemoselective methionine bioconjugation. Lin S, Yang X, Jia S, Weeks AM, Hornsby M, Lee PS, Nichiporuk RV, Iavarone AT, Wells JA, Toste FD, Chang CJ. Science 355 597-602 (2017)
  3. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. Jackson PA, Widen JC, Harki DA, Brummond KM. J Med Chem 60 839-885 (2017)
  4. Electrophilic fragment-based design of reversible covalent kinase inhibitors. Miller RM, Paavilainen VO, Krishnan S, Serafimova IM, Taunton J. J Am Chem Soc 135 5298-5301 (2013)
  5. Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Akçay G, Belmonte MA, Aquila B, Chuaqui C, Hird AW, Lamb ML, Rawlins PB, Su N, Tentarelli S, Grimster NP, Su Q. Nat Chem Biol 12 931-936 (2016)
  6. Efficient Targeted Degradation via Reversible and Irreversible Covalent PROTACs. Gabizon R, Shraga A, Gehrtz P, Livnah E, Shorer Y, Gurwicz N, Avram L, Unger T, Aharoni H, Albeck S, Brandis A, Shulman Z, Katz BZ, Herishanu Y, London N. J Am Chem Soc 142 11734-11742 (2020)
  7. Photochemical activation of TRPA1 channels in neurons and animals. Kokel D, Cheung CY, Mills R, Coutinho-Budd J, Huang L, Setola V, Sprague J, Jin S, Jin YN, Huang XP, Bruni G, Woolf CJ, Roth BL, Hamblin MR, Zylka MJ, Milan DJ, Peterson RT. Nat Chem Biol 9 257-263 (2013)
  8. A Reversible Fluorescent Probe for Real-Time Quantitative Monitoring of Cellular Glutathione. Liu Z, Zhou X, Miao Y, Hu Y, Kwon N, Wu X, Yoon J. Angew Chem Int Ed Engl 56 5812-5816 (2017)
  9. Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of β-tubulin. Antony ML, Lee J, Hahm ER, Kim SH, Marcus AI, Kumari V, Ji X, Yang Z, Vowell CL, Wipf P, Uechi GT, Yates NA, Romero G, Sarkar SN, Singh SV. J Biol Chem 289 1852-1865 (2014)
  10. Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Larraufie MH, Yang WS, Jiang E, Thomas AG, Slusher BS, Stockwell BR. Bioorg Med Chem Lett 25 4787-4792 (2015)
  11. A study of the reactivity of S(VI)-F containing warheads with nucleophilic amino-acid side chains under physiological conditions. Mukherjee H, Debreczeni J, Breed J, Tentarelli S, Aquila B, Dowling JE, Whitty A, Grimster NP. Org Biomol Chem 15 9685-9695 (2017)
  12. Bardoxolone conjugation enables targeted protein degradation of BRD4. Tong B, Luo M, Xie Y, Spradlin JN, Tallarico JA, McKenna JM, Schirle M, Maimone TJ, Nomura DK. Sci Rep 10 15543 (2020)
  13. Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket. Forster M, Chaikuad A, Bauer SM, Holstein J, Robers MB, Corona CR, Gehringer M, Pfaffenrot E, Ghoreschi K, Knapp S, Laufer SA. Cell Chem Biol 23 1335-1340 (2016)
  14. The 19S Deubiquitinase inhibitor b-AP15 is enriched in cells and elicits rapid commitment to cell death. Wang X, Stafford W, Mazurkiewicz M, Fryknäs M, Brjnic S, Zhang X, Gullbo J, Larsson R, Arnér ES, D'Arcy P, Linder S. Mol Pharmacol 85 932-945 (2014)
  15. Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Adhikari AA, Seegar TCM, Ficarro SB, McCurry MD, Ramachandran D, Yao L, Chaudhari SN, Ndousse-Fetter S, Banks AS, Marto JA, Blacklow SC, Devlin AS. Nat Chem Biol 16 318-326 (2020)
  16. Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. Scott DC, Hammill JT, Min J, Rhee DY, Connelly M, Sviderskiy VO, Bhasin D, Chen Y, Ong SS, Chai SC, Goktug AN, Huang G, Monda JK, Low J, Kim HS, Paulo JA, Cannon JR, Shelat AA, Chen T, Kelsall IR, Alpi AF, Pagala V, Wang X, Peng J, Singh B, Harper JW, Schulman BA, Guy RK. Nat Chem Biol 13 850-857 (2017)
  17. Natural Product Kongensin A is a Non-Canonical HSP90 Inhibitor that Blocks RIP3-dependent Necroptosis. Li D, Li C, Li L, Chen S, Wang L, Li Q, Wang X, Lei X, Shen Z. Cell Chem Biol 23 257-266 (2016)
  18. Engineering peptide ligase specificity by proteomic identification of ligation sites. Weeks AM, Wells JA. Nat Chem Biol 14 50-57 (2018)
  19. Targeting bacteria via iminoboronate chemistry of amine-presenting lipids. Bandyopadhyay A, McCarthy KA, Kelly MA, Gao J. Nat Commun 6 6561 (2015)
  20. Thiol Specific and Tracelessly Removable Bioconjugation via Michael Addition to 5-Methylene Pyrrolones. Zhang Y, Zhou X, Xie Y, Greenberg MM, Xi Z, Zhou C. J Am Chem Soc 139 6146-6151 (2017)
  21. A Combined Approach Reveals a Regulatory Mechanism Coupling Src's Kinase Activity, Localization, and Phosphotransferase-Independent Functions. Ahler E, Register AC, Chakraborty S, Fang L, Dieter EM, Sitko KA, Vidadala RSR, Trevillian BM, Golkowski M, Gelman H, Stephany JJ, Rubin AF, Merritt EA, Fowler DM, Maly DJ. Mol Cell 74 393-408.e20 (2019)
  22. 10 years into the resurgence of covalent drugs. De Vita E. Future Med Chem 13 193-210 (2021)
  23. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. Mukherjee S, Weiner WS, Schroeder CE, Simpson DS, Hanson AM, Sweeney NL, Marvin RK, Ndjomou J, Kolli R, Isailovic D, Schoenen FJ, Frick DN. ACS Chem Biol 9 2393-2403 (2014)
  24. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma. Nairismägi M-, Gerritsen ME, Li ZM, Wijaya GC, Chia BKH, Laurensia Y, Lim JQ, Yeoh KW, Yao XS, Pang WL, Bisconte A, Hill RJ, Bradshaw JM, Huang D, Song TLL, Ng CCY, Rajasegaran V, Tang T, Tang QQ, Xia XJ, Kang TB, Teh BT, Lim ST, Ong CK, Tan J. Leukemia 32 1147-1156 (2018)
  25. Characterizing the Covalent Targets of a Small Molecule Inhibitor of the Lysine Acetyltransferase P300. Shrimp JH, Sorum AW, Garlick JM, Guasch L, Nicklaus MC, Meier JL. ACS Med Chem Lett 7 151-155 (2016)
  26. On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry. Long MJ, Poganik JR, Aye Y. J Am Chem Soc 138 3610-3622 (2016)
  27. Development of a RSK Inhibitor as a Novel Therapy for Triple-Negative Breast Cancer. Ludwik KA, Campbell JP, Li M, Li Y, Sandusky ZM, Pasic L, Sowder ME, Brenin DR, Pietenpol JA, O'Doherty GA, Lannigan DA. Mol Cancer Ther 15 2598-2608 (2016)
  28. Preclinical Efficacy and Anti-Inflammatory Mechanisms of Action of the Bruton Tyrosine Kinase Inhibitor Rilzabrutinib for Immune-Mediated Disease. Langrish CL, Bradshaw JM, Francesco MR, Owens TD, Xing Y, Shu J, LaStant J, Bisconte A, Outerbridge C, White SD, Hill RJ, Brameld KA, Goldstein DM, Nunn PA. J Immunol 206 1454-1468 (2021)
  29. Covalent Tethering of Fragments For Covalent Probe Discovery. Kathman SG, Statsyuk AV. Medchemcomm 7 576-585 (2016)
  30. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis. Baldwin PR, Reeves AZ, Powell KR, Napier RJ, Swimm AI, Sun A, Giesler K, Bommarius B, Shinnick TM, Snyder JP, Liotta DC, Kalman D. Eur J Med Chem 92 693-699 (2015)
  31. Selective and reversible modification of kinase cysteines with chlorofluoroacetamides. Shindo N, Fuchida H, Sato M, Watari K, Shibata T, Kuwata K, Miura C, Okamoto K, Hatsuyama Y, Tokunaga K, Sakamoto S, Morimoto S, Abe Y, Shiroishi M, Caaveiro JMM, Ueda T, Tamura T, Matsunaga N, Nakao T, Koyanagi S, Ohdo S, Yamaguchi Y, Hamachi I, Ono M, Ojida A. Nat Chem Biol 15 250-258 (2019)
  32. Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids. Dai F, Liu GY, Li Y, Yan WJ, Wang Q, Yang J, Lu DL, Ding DJ, Lin D, Zhou B. Free Radic Biol Med 85 127-137 (2015)
  33. Lysine-Targeting Reversible Covalent Inhibitors with Long Residence Time. Reja RM, Wang W, Lyu Y, Haeffner F, Gao J. J Am Chem Soc 144 1152-1157 (2022)
  34. Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor. Ramkumar K, Samanta S, Kyani A, Yang S, Tamura S, Ziemke E, Stuckey JA, Li S, Chinnaswamy K, Otake H, Debnath B, Yarovenko V, Sebolt-Leopold JS, Ljungman M, Neamati N. Nat Commun 7 13084 (2016)
  35. Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694. Zhong Y, Dong S, Strattan E, Ren L, Butchar JP, Thornton K, Mishra A, Porcu P, Bradshaw JM, Bisconte A, Owens TD, Verner E, Brameld KA, Funk JO, Hill RJ, Johnson AJ, Dubovsky JA. J Biol Chem 290 5960-5978 (2015)
  36. Reversible covalent inhibition of a protein target. Lee CU, Grossmann TN. Angew Chem Int Ed Engl 51 8699-8700 (2012)
  37. Covalent Protein Labeling at Glutamic Acids. Martín-Gago P, Fansa EK, Winzker M, Murarka S, Janning P, Schultz-Fademrecht C, Baumann M, Wittinghofer A, Waldmann H. Cell Chem Biol 24 589-597.e5 (2017)
  38. Competitive profiling of celastrol targets in human cervical cancer HeLa cells via quantitative chemical proteomics. Zhou Y, Li W, Wang M, Zhang X, Zhang H, Tong X, Xiao Y. Mol Biosyst 13 83-91 (2016)
  39. Potent and selective covalent inhibition of the papain-like protease from SARS-CoV-2. Sanders BC, Pokhrel S, Labbe AD, Mathews II, Cooper CJ, Davidson RB, Phillips G, Weiss KL, Zhang Q, O'Neill H, Kaur M, Schmidt JG, Reichard W, Surendranathan S, Parvathareddy J, Phillips L, Rainville C, Sterner DE, Kumaran D, Andi B, Babnigg G, Moriarty NW, Adams PD, Joachimiak A, Hurst BL, Kumar S, Butt TR, Jonsson CB, Ferrins L, Wakatsuki S, Galanie S, Head MS, Parks JM. Nat Commun 14 1733 (2023)
  40. Designing piperlongumine-directed anticancer agents by an electrophilicity-based prooxidant strategy: A mechanistic investigation. Yan WJ, Wang Q, Yuan CH, Wang F, Ji Y, Dai F, Jin XL, Zhou B. Free Radic Biol Med 97 109-123 (2016)
  41. Dynamic thiol exchange with β-sulfido-α,β-unsaturated carbonyl compounds and dithianes. Joshi G, Anslyn EV. Org Lett 14 4714-4717 (2012)
  42. Metabolically Labile Fumarate Esters Impart Kinetic Selectivity to Irreversible Inhibitors. Zaro BW, Whitby LR, Lum KM, Cravatt BF. J Am Chem Soc 138 15841-15844 (2016)
  43. Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action. Steinman JB, Santarossa CC, Miller RM, Yu LS, Serpinskaya AS, Furukawa H, Morimoto S, Tanaka Y, Nishitani M, Asano M, Zalyte R, Ondrus AE, Johnson AG, Ye F, Nachury MV, Fukase Y, Aso K, Foley MA, Gelfand VI, Chen JK, Carter AP, Kapoor TM. Elife 6 e25174 (2017)
  44. Lysine-Targeted Reversible Covalent Ligand Discovery for Proteins via Phage Display. Zheng M, Chen FJ, Li K, Reja RM, Haeffner F, Gao J. J Am Chem Soc 144 15885-15893 (2022)
  45. Tunable Methacrylamides for Covalent Ligand Directed Release Chemistry. Reddi RN, Resnick E, Rogel A, Rao BV, Gabizon R, Goldenberg K, Gurwicz N, Zaidman D, Plotnikov A, Barr H, Shulman Z, London N. J Am Chem Soc 143 4979-4992 (2021)
  46. Covalent small molecule inhibitors of Ca(2+)-bound S100B. Cavalier MC, Pierce AD, Wilder PT, Alasady MJ, Hartman KG, Neau DB, Foley TL, Jadhav A, Maloney DJ, Simeonov A, Toth EA, Weber DJ. Biochemistry 53 6628-6640 (2014)
  47. The Proteome-Wide Potential for Reversible Covalency at Cysteine. Senkane K, Vinogradova EV, Suciu RM, Crowley VM, Zaro BW, Bradshaw JM, Brameld KA, Cravatt BF. Angew Chem Int Ed Engl 58 11385-11389 (2019)
  48. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. Boatner LM, Palafox MF, Schweppe DK, Backus KM. Cell Chem Biol 30 683-698.e3 (2023)
  49. In Situ Observation of Thiol Michael Addition to a Reversible Covalent Drug in a Crystalline Sponge. Duplan V, Hoshino M, Li W, Honda T, Fujita M. Angew Chem Int Ed Engl 55 4919-4923 (2016)
  50. Versatile Bioconjugation Chemistries of ortho-Boronyl Aryl Ketones and Aldehydes. Cambray S, Gao J. Acc Chem Res 51 2198-2206 (2018)
  51. Characterization of FGF401 as a reversible covalent inhibitor of fibroblast growth factor receptor 4. Zhou Z, Chen X, Fu Y, Zhang Y, Dai S, Li J, Chen L, Xu G, Chen Z, Chen Y. Chem Commun (Camb) 55 5890-5893 (2019)
  52. Irreversible inhibition of DNA polymerase β by small-molecule mimics of a DNA lesion. Arian D, Hedayati M, Zhou H, Bilis Z, Chen K, DeWeese TL, Greenberg MM. J Am Chem Soc 136 3176-3183 (2014)
  53. Michael addition-based probes for ratiometric fluorescence imaging of protein S-depalmitoylases in live cells and tissues. Beck MW, Kathayat RS, Cham CM, Chang EB, Dickinson BC. Chem Sci 8 7588-7592 (2017)
  54. Ranking Reversible Covalent Drugs: From Free Energy Perturbation to Fragment Docking. Zhang H, Jiang W, Chatterjee P, Luo Y. J Chem Inf Model 59 2093-2102 (2019)
  55. Selective lysine modification of native peptides via aza-Michael addition. Chen H, Huang R, Li Z, Zhu W, Chen J, Zhan Y, Jiang B. Org Biomol Chem 15 7339-7345 (2017)
  56. A Liquid Chromatography/Mass Spectrometry Method for Screening Disulfide Tethering Fragments. Hallenbeck KK, Davies JL, Merron C, Ogden P, Sijbesma E, Ottmann C, Renslo AR, Wilson C, Arkin MR. SLAS Discov 23 183-192 (2018)
  57. Celastrol binds to its target protein via specific noncovalent interactions and reversible covalent bonds. Zhang D, Chen Z, Hu C, Yan S, Li Z, Lian B, Xu Y, Ding R, Zeng Z, Zhang XK, Su Y. Chem Commun (Camb) 54 12871-12874 (2018)
  58. Discovery of Irreversible Inhibitors Targeting Histone Methyltransferase, SMYD3. Huang C, Liew SS, Lin GR, Poulsen A, Ang MJY, Chia BCS, Chew SY, Kwek ZP, Wee JLK, Ong EH, Retna P, Baburajendran N, Li R, Yu W, Koh-Stenta X, Ngo A, Manesh S, Fulwood J, Ke Z, Chung HH, Sepramaniam S, Chew XH, Dinie N, Lee MA, Chew YS, Low CB, Pendharkar V, Manoharan V, Vuddagiri S, Sangthongpitag K, Joy J, Matter A, Hill J, Keller TH, Foo K. ACS Med Chem Lett 10 978-984 (2019)
  59. Discovery of a Small-Molecule Modulator of Glycosaminoglycan Sulfation. Cheung ST, Miller MS, Pacoma R, Roland J, Liu J, Schumacher AM, Hsieh-Wilson LC. ACS Chem Biol 12 3126-3133 (2017)
  60. Nucleophilicity of Glutathione: A Link to Michael Acceptor Reactivities. Mayer RJ, Ofial AR. Angew Chem Int Ed Engl 58 17704-17708 (2019)
  61. Reversible covalent inhibition of eEF-2K by carbonitriles. Devkota AK, Edupuganti R, Yan C, Shi Y, Jose J, Wang Q, Kaoud TS, Cho EJ, Ren P, Dalby KN. Chembiochem 15 2435-2442 (2014)
  62. Selective Inhibition of the Immunoproteasome by Structure-Based Targeting of a Non-catalytic Cysteine. Dubiella C, Baur R, Cui H, Huber EM, Groll M. Angew Chem Int Ed Engl 54 15888-15891 (2015)
  63. A Methyl 4-Oxo-4-phenylbut-2-enoate with in Vivo Activity against MRSA that Inhibits MenB in the Bacterial Menaquinone Biosynthesis Pathway. Matarlo JS, Lu Y, Daryaee F, Daryaee T, Ruzsicska B, Walker SG, Tonge PJ. ACS Infect Dis 2 329-340 (2016)
  64. Template effects of vesicles in dynamic covalent chemistry. Bravin C, Hunter CA. Chem Sci 11 9122-9125 (2020)
  65. Dynamic reaction-induced phase separation in tunable, adaptive covalent networks. Herbert KM, Getty PT, Dolinski ND, Hertzog JE, de Jong D, Lettow JH, Romulus J, Onorato JW, Foster EM, Rowan SJ. Chem Sci 11 5028-5036 (2020)
  66. Rational design of resorcylic acid lactone analogues as covalent MNK1/2 kinase inhibitors by tuning the reactivity of an enamide Michael acceptor. Xu J, Chen A, Joy J, Xavier VJ, Ong EH, Hill J, Chai CL. ChemMedChem 8 1483-1494 (2013)
  67. Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma. Lu X, Sabbasani VR, Osei-Amponsa V, Evans CN, King JC, Tarasov SG, Dyba M, Das S, Chan KC, Schwieters CD, Choudhari S, Fromont C, Zhao Y, Tran B, Chen X, Matsuo H, Andresson T, Chari R, Swenson RE, Tarasova NI, Walters KJ. Nat Commun 12 7318 (2021)
  68. A Covalent Cysteine-Targeting Kinase Inhibitor of Ire1 Permits Allosteric Control of Endoribonuclease Activity. Waller DD, Jansen G, Golizeh M, Martel-Lorion C, Dejgaard K, Shiao TC, Mancuso J, Tsantrizos YS, Roy R, Sebag M, Sleno L, Thomas DY. Chembiochem 17 843-851 (2016)
  69. Characterization of Covalent-Reversible EGFR Inhibitors. Smith S, Keul M, Engel J, Basu D, Eppmann S, Rauh D. ACS Omega 2 1563-1575 (2017)
  70. E- and Z-, di- and tri-substituted alkenyl nitriles through catalytic cross-metathesis. Mu Y, Nguyen TT, Koh MJ, Schrock RR, Hoveyda AH. Nat Chem 11 478-487 (2019)
  71. Design and synthesis of N-acylated aza-goniothalamin derivatives and evaluation of their in vitro and in vivo antitumor activity. Barcelos RC, Pastre JC, Vendramini-Costa DB, Caixeta V, Longato GB, Monteiro PA, de Carvalho JE, Pilli RA. ChemMedChem 9 2725-2743 (2014)
  72. research-article Monitoring Glutathione Dynamics and Heterogeneity in Living Stem Cells. Jeong EM, Shin JW, Lim J, Kim JH, Kang H, Yin Y, Kim HM, Kim Y, Kim SG, Kang HS, Shin DM, Choi K, Kim IG. Int J Stem Cells 12 367-379 (2019)
  73. N-Terminal cysteine mediated backbone-side chain cyclization for chemically enhanced phage display. Zheng M, Haeffner F, Gao J. Chem Sci 13 8349-8354 (2022)
  74. The Allosteric Site on SHP2's Protein Tyrosine Phosphatase Domain is Targetable with Druglike Small Molecules. Marsh-Armstrong B, Fajnzylber JM, Korntner S, Plaman BA, Bishop AC. ACS Omega 3 15763-15770 (2018)
  75. A Triazolotriazine-Based Dual GSK-3β/CK-1δ Ligand as a Potential Neuroprotective Agent Presenting Two Different Mechanisms of Enzymatic Inhibition. Redenti S, Marcovich I, De Vita T, Pérez C, De Zorzi R, Demitri N, Perez DI, Bottegoni G, Bisignano P, Bissaro M, Moro S, Martinez A, Storici P, Spalluto G, Cavalli A, Federico S. ChemMedChem 14 310-314 (2019)
  76. A new goniothalamin N-acylated aza-derivative strongly downregulates mediators of signaling transduction associated with pancreatic cancer aggressiveness. Barcelos RC, Pelizzaro-Rocha KJ, Pastre JC, Dias MP, Ferreira-Halder CV, Pilli RA. Eur J Med Chem 87 745-758 (2014)
  77. Automated computational screening of the thiol reactivity of substituted alkenes. Smith JM, Rowley CN. J Comput Aided Mol Des 29 725-735 (2015)
  78. Michael acceptor containing drugs are a novel class of 5-lipoxygenase inhibitor targeting the surface cysteines C416 and C418. Maucher IV, Rühl M, Kretschmer SB, Hofmann B, Kühn B, Fettel J, Vogel A, Flügel KT, Manolikakes G, Hellmuth N, Häfner AK, Golghalyani V, Ball AK, Piesche M, Matrone C, Geisslinger G, Parnham MJ, Karas M, Steinhilber D, Roos J, Maier TJ. Biochem Pharmacol 125 55-74 (2017)
  79. Covalent inhibitors of LgtC: A blueprint for the discovery of non-substrate-like inhibitors for bacterial glycosyltransferases. Xu Y, Smith R, Vivoli M, Ema M, Goos N, Gehrke S, Harmer NJ, Wagner GK. Bioorg Med Chem 25 3182-3194 (2017)
  80. Dynamic Formation of Imidazolidino Boronate Enables Design of Cysteine-Responsive Peptides. Li K, Weidman C, Gao J. Org Lett 20 20-23 (2018)
  81. High-efficiency dynamic sensing of biothiols in cancer cells with a fluorescent β-cyclodextrin supramolecular assembly. Liu Z, Zhou W, Li J, Zhang H, Dai X, Liu Y, Liu Y. Chem Sci 11 4791-4800 (2020)
  82. Structural basis for the inhibitory effects of a novel reversible covalent ligand on PPARγ phosphorylation. Jang JY, Kim H, Kim HJ, Suh SW, Park SB, Han BW. Sci Rep 9 11168 (2019)
  83. Structure-Activity Relationships of the Antitumor C5-Curcuminoid GO-Y030. Kohyama A, Yamakoshi H, Hongo S, Kanoh N, Shibata H, Iwabuchi Y. Molecules 20 15374-15391 (2015)
  84. Tandem Wittig/Diels-Alder diversification of genetically encoded peptide libraries. Triana V, Derda R. Org Biomol Chem 15 7869-7877 (2017)
  85. Thiomethyltetrazines Are Reversible Covalent Cysteine Warheads Whose Dynamic Behavior can be "Switched Off" via Bioorthogonal Chemistry Inside Live Cells. Tallon AM, Xu Y, West GM, Am Ende CW, Fox JM. J Am Chem Soc 145 16069-16080 (2023)
  86. Chemoproteomics of an Indole-Based Quinone Epoxide Identifies Druggable Vulnerabilities in Vancomycin-Resistant Staphylococcus aureus. Kulkarni A, Soni I, Kelkar DS, Dharmaraja AT, Sankar RK, Beniwal G, Rajendran A, Tamhankar S, Chopra S, Kamat SS, Chakrapani H. J Med Chem 62 6785-6795 (2019)
  87. Dynamic Aminal-Based TPA Ligands. Zhou Y, Yuan Y, You L, Anslyn EV. Chemistry 21 8207-8213 (2015)
  88. Protein Electric Fields Enable Faster and Longer-Lasting Covalent Inhibition of β-Lactamases. Ji Z, Kozuch J, Mathews II, Diercks CS, Shamsudin Y, Schulz MA, Boxer SG. J Am Chem Soc 144 20947-20954 (2022)
  89. Synthesis of piperlogs and analysis of their effects on cells. Boskovic ZV, Hussain MM, Adams DJ, Dai M, Schreiber SL. Tetrahedron 69 (2013)
  90. Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells. Logie E, Chirumamilla CS, Perez-Novo C, Shaw P, Declerck K, Palagani A, Rangarajan S, Cuypers B, De Neuter N, Mobashar Hussain Urf Turabe F, Kumar Verma N, Bogaerts A, Laukens K, Offner F, Van Vlierberghe P, Van Ostade X, Berghe WV. Cancers (Basel) 13 1618 (2021)
  91. DNA-Compatible Solid-Phase Combinatorial Synthesis of β-Cyanoacrylamides and Related Electrophiles. Pels K, Dickson P, An H, Kodadek T. ACS Comb Sci 20 61-69 (2018)
  92. Docking-based virtual screening studies aiming at the covalent inhibition of SARS-CoV-2 MPro by targeting the cysteine 145. Soulère L, Barbier T, Queneau Y. Comput Biol Chem 92 107463 (2021)
  93. Hypoxia-selective allosteric destabilization of activin receptor-like kinases: A potential therapeutic avenue for prophylaxis of heterotopic ossification. Lu G, Tandang-Silvas MR, Dawson AC, Dawson TJ, Groppe JC. Bone 112 71-89 (2018)
  94. Pharmacokinetic Optimization of Small Molecule Janus Kinase 3 Inhibitors to Target Immune Cells. Laux J, Forster M, Riexinger L, Schwamborn A, Guezguez J, Pokoj C, Kudolo M, Berger LM, Knapp S, Schollmeyer D, Guse J, Burnet M, Laufer SA. ACS Pharmacol Transl Sci 5 573-602 (2022)
  95. Reversibility of the thia-Michael reaction of cytotoxic C5-curcuminoid and structure-activity relationship of bis-thiol-adducts thereof. Kohyama A, Fukuda M, Sugiyama S, Yamakoshi H, Kanoh N, Ishioka C, Shibata H, Iwabuchi Y. Org Biomol Chem 14 10683-10687 (2016)
  96. Synthesis, molecular modeling and NAD(P)H:quinone oxidoreductase 1 inducer activity of novel cyanoenone and enone benzenesulfonamides. Ghorab MM, Higgins M, Alsaid MS, Arafa RK, Shahat AA, Dinkova-Kostova AT. J Enzyme Inhib Med Chem 29 840-845 (2014)
  97. Chemoproteomic Method for Profiling Inhibitor-Bound Kinase Complexes. Fang L, Chakraborty S, Dieter EM, Potter ZE, Lombard CK, Maly DJ. J Am Chem Soc 141 11912-11922 (2019)
  98. Enhancing the Equilibrium of Dynamic Thia-Michael Reactions through Heterocyclic Design. Crolais AE, Dolinski ND, Boynton NR, Radhakrishnan JM, Snyder SA, Rowan SJ. J Am Chem Soc 145 14427-14434 (2023)
  99. Potent covalent inhibitors of bacterial urease identified by activity-reactivity profiling. Macegoniuk K, Kowalczyk R, Rudzińska A, Psurski M, Wietrzyk J, Berlicki Ł. Bioorg Med Chem Lett 27 1346-1350 (2017)
  100. Quantum Descriptors for Predicting and Understanding the Structure-Activity Relationships of Michael Acceptor Warheads. Liu R, Vázquez-Montelongo EA, Ma S, Shen J. J Chem Inf Model 63 4912-4923 (2023)
  101. Rapid and reversible hydrazone bioconjugation in cells without the use of extraneous catalysts. Nisal R, P Jose G, Shanbhag C, Kalia J. Org Biomol Chem 16 4304-4310 (2018)
  102. A light-up endoplasmic reticulum probe based on a rational design of red-emissive fluorogens with aggregation-induced emission. Zhang CJ, Cai X, Xu S, Zhan R, Jien W, Liu B. Chem Commun (Camb) 53 10792-10795 (2017)
  103. A phenacrylate scaffold for tunable thiol activation and release. Sankar RK, Kumbhare RS, Dharmaraja AT, Chakrapani H. Chem Commun (Camb) 50 15323-15326 (2014)
  104. Allenamide as a bioisostere of acrylamide in the design and synthesis of targeted covalent inhibitors. Chen D, Guo D, Yan Z, Zhao Y. Medchemcomm 9 244-253 (2018)
  105. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities. Litwin K, Crowley VM, Suciu RM, Boger DL, Cravatt BF. Tetrahedron Lett 67 152861 (2021)
  106. Computational Study of the Addition of Methanethiol to 40+ Michael Acceptors as a Model for the Bioconjugation of Cysteines. Costa AM, Bosch L, Petit E, Vilarrasa J. J Org Chem 86 7107-7118 (2021)
  107. Covalent inhibition of the lymphoid tyrosine phosphatase. Ahmed VF, Bottini N, Barrios AM. ChemMedChem 9 296-299 (2014)
  108. Design, synthesis and biological evaluation of FLT3 covalent inhibitors with a resorcylic acid core. Xu J, Ong EHQ, Hill J, Chen A, Chai CLL. Bioorg Med Chem 22 6625-6637 (2014)
  109. Dynamic Covalent Michael Acceptors to Penetrate Cells: Thiol-Mediated Uptake with Tetrel-Centered Exchange Cascades, Assisted by Halogen-Bonding Switches. Shybeka I, Maynard JRJ, Saidjalolov S, Moreau D, Sakai N, Matile S. Angew Chem Int Ed Engl 61 e202213433 (2022)
  110. Facile one-pot synthesis of sulfonyl fluorides from sulfonates or sulfonic acids. Jiang Y, Alharbi NS, Sun B, Qin HL. RSC Adv 9 13863-13867 (2019)
  111. Inhibiting a dynamic viral protease by targeting a non-catalytic cysteine. Hulce KR, Jaishankar P, Lee GM, Bohn MF, Connelly EJ, Wucherer K, Ongpipattanakul C, Volk RF, Chuo SW, Arkin MR, Renslo AR, Craik CS. Cell Chem Biol 29 785-798.e19 (2022)
  112. Structure-Reactivity Studies of 2-Sulfonylpyrimidines Allow Selective Protein Arylation. Pichon MM, Drelinkiewicz D, Lozano D, Moraru R, Hayward LJ, Jones M, McCoy MA, Allstrum-Graves S, Balourdas DI, Joerger AC, Whitby RJ, Goldup SM, Wells N, Langley GJ, Herniman JM, Baud MGJ. Bioconjug Chem 34 1679-1687 (2023)
  113. Thiophene bridged aldehydes (TBAs) image ALDH activity in cells via modulation of intramolecular charge transfer. Maity S, Maity S, Sadlowski CM, George Lin JM, Chen CH, Peng LH, Lee ES, Vegesna GK, Lee C, Kim SH, Mochly-Rosen D, Kumar S, Murthy N. Chem Sci 8 7143-7151 (2017)
  114. Zinc clasp-based reversible toolset for selective metal-mediated protein heterodimerization. Kocyła A, Krężel A. Chem Commun (Camb) 54 13539-13542 (2018)
  115. Development of Novel Analogs of the Monocarboxylate Transporter Ligand FACH and Biological Validation of One Potential Radiotracer for Positron Emission Tomography (PET) Imaging. Sadeghzadeh M, Wenzel B, Gündel D, Deuther-Conrad W, Toussaint M, Moldovan RP, Fischer S, Ludwig FA, Teodoro R, Jonnalagadda S, Jonnalagadda SK, Schüürmann G, Mereddy VR, Drewes LR, Brust P. Molecules 25 E2309 (2020)
  116. Functional Basis and Biophysical Approaches to Characterize the C-Terminal Domain of Human-Ribosomal S6 Kinases-3. Jagilinki BP, Choudhary RK, Thapa PS, Gadewal N, Hosur MV, Kumar S, Varma AK. Cell Biochem Biophys 74 317-325 (2016)
  117. Identifying requirements for RSK2 specific inhibitors. Wright EB, Fukuda S, Li M, Li Y, O'Doherty GA, Lannigan DA. J Enzyme Inhib Med Chem 36 1798-1809 (2021)
  118. News Principia Biopharma. Garber K. Nat Biotechnol 31 377 (2013)
  119. Thioimidate Bond Formation between Cardiac Troponin C and Nitrile-containing Compounds. Klein BA, Robertson IM, Reiz B, Kampourakis T, Li L, Sykes BD. ACS Med Chem Lett 10 1007-1012 (2019)
  120. α-Bromophosphonate analogs of glucose-6-phosphate are inhibitors of glucose-6-phosphatase. Downey AM, Cairo CW. Carbohydr Res 381 123-132 (2013)
  121. (-)-Tarchonanthuslactone: Design of New Analogues, Evaluation of their Antiproliferative Activity on Cancer Cell Lines, and Preliminary Mechanistic Studies. Toneto Novaes LF, Martins Avila C, Pelizzaro-Rocha KJ, Vendramini-Costa DB, Pereira Dias M, Barbosa Trivella DB, Ernesto de Carvalho J, Ferreira-Halder CV, Pilli RA. ChemMedChem 10 1687-1699 (2015)
  122. An electrophilic fragment screening for the development of small molecules targeting caspase-2. Cuellar ME, Yang M, Karavadhi S, Zhang YQ, Zhu H, Sun H, Shen M, Hall MD, Patnaik S, Ashe KH, Walters MA, Pockes S. Eur J Med Chem 259 115632 (2023)
  123. Bioconjugate Platform for Iterative Backbone N-Methylation of Peptides. Zheng Y, Ongpipattanakul C, Nair SK. ACS Catal 12 14006-14014 (2022)
  124. Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids. Bracken AK, Gekko CE, Suss NO, Lueders EE, Cui Q, Fu Q, Lui ACW, Anderson ET, Zhang S, Abbasov ME. J Am Chem Soc 146 2524-2548 (2024)
  125. Designing Stress-Adaptive Dense Suspensions Using Dynamic Covalent Chemistry. Jackson GL, Dennis JM, Dolinski ND, van der Naald M, Kim H, Eom C, Rowan SJ, Jaeger HM. Macromolecules 55 6453-6461 (2022)
  126. Elucidating the Catalytic Power of Glutamate Racemase by Investigating a Series of Covalent Inhibitors. Vance NR, Witkin KR, Rooney PW, Li Y, Pope M, Spies MA. ChemMedChem 13 2514-2521 (2018)
  127. Comment Promising reversible protein inhibitors kept on target. Hacker SM. Nature 603 583-584 (2022)
  128. Promoting active learning of graduate student by deep reading in biochemistry and microbiology pharmacy curriculum. Peng R. Biochem Mol Biol Educ 45 305-312 (2017)
  129. Species-specific lipophilicities of fluorinated diketones in complex equilibria systems and their potential as multifaceted reversible covalent warheads. Columbus I, Ghindes-Azaria L, Herzog IM, Blum E, Parvari G, Eichen Y, Cohen Y, Gershonov E, Drug E, Saphier S, Elias S, Smolkin B, Zafrani Y. Commun Chem 6 197 (2023)
  130. Substituted tetrazoles as multipurpose screening compounds. Rüger N, Fassauer GM, Bock C, Emmrich T, Bodtke A, Link A. Mol Divers 21 9-27 (2017)
  131. Synthesis and Characterization of Reversible Covalent HDAC4 Inhibitors. Frühauf A, Wolff B, Schweipert M, Meyer-Almes FJ. Methods Mol Biol 2589 207-221 (2023)
  132. Tractable synthesis of multipurpose screening compounds with under-represented molecular features for an open access screening platform. Wilde F, Specker E, Neuenschwander M, Nazaré M, Bodtke A, Link A. Mol Divers 18 483-495 (2014)
  133. Activation and inhibition of the C-terminal kinase domain of p90 ribosomal S6 kinases. Fruergaard MU, Nielsen CJF, Kjeldsen CR, Iversen L, Andersen JL, Nissen P. Life Sci Alliance 6 e202201425 (2023)
  134. Evaluation of a Covalent Library of Diverse Warheads (CovLib) Binding to JNK3, USP7, or p53. Klett T, Schwer M, Ernst LN, Engelhardt MU, Jaag SJ, Masberg B, Knappe C, Lämmerhofer M, Gehringer M, Boeckler FM. Drug Des Devel Ther 18 2653-2679 (2024)
  135. Exploring 2-Sulfonylpyrimidine Warheads as Acrylamide Surrogates for Targeted Covalent Inhibition: A BTK Story. Moraru R, Valle-Argos B, Minton A, Buermann L, Pan S, Wales TE, Joseph RE, Andreotti AH, Strefford JC, Packham G, Baud MGJ. J Med Chem 67 13572-13593 (2024)
  136. Identification and Evaluation of Reversible Covalent Binders to Cys55 of Bfl-1 from a DNA-Encoded Chemical Library Screen. Lucas SCC, Blackwell JH, Börjesson U, Hargreaves D, Milbradt AG, Ahmed S, Bostock MJ, Guerot C, Gohlke A, Kinzel O, Lamb ML, Selmi N, Stubbs CJ, Su N, Su Q, Luo H, Xiong T, Zuo X, Bazzaz S, Bienstock C, Centrella PA, Denton KE, Gikunju D, Guié MA, Guilinger JP, Hupp C, Keefe AD, Satoh T, Zhang Y, Rivers EL. ACS Med Chem Lett 15 791-797 (2024)
  137. Simply Structured Conjugated Compounds with Cyanoacrylate or Acrylonitrile Groups for Sensing of p-Toluenethiol. Adachi N, Suzuki E. Anal Sci 35 745-750 (2019)
  138. Structure-Based Identification of Kelch-like ECH-Associated Protein 1 as a Pharmacological Target of Electrophile-Containing Catechol-O-Methyltransferase Inhibitors. Wang P, Li Y, Yang J, Li Z, Ren X, Meng Q, Li P, Qin L, Li W, Xie Y, Hou N, Huang N. ACS Pharmacol Transl Sci 7 693-706 (2024)
  139. Synthesis and biological activity of 2-cyanoacrylamide derivatives tethered to imidazopyridine as TAK1 inhibitors. Kang SJ, Lee JW, Song J, Park J, Choi J, Suh KH, Min KH. J Enzyme Inhib Med Chem 35 1928-1936 (2020)
  140. Synthesis and styrene copolymerization of novel trisubstituted ethylenes: 3. Alkoxy ring-substituted isopropyl 2-cyano-3-phenyl-2-propenoates. Kharas GB, Shinde N, Jody JK, Mosher EK, Kaur N, Oriol AAR, Perez DM, Ranganathan R, Renteria A, Rydbom TA, Yeager C, Schjerven WS. Des Monomers Polym 21 163-171 (2018)
  141. Targeting the Main Protease (Mpro, nsp5) by Growth of Fragment Scaffolds Exploiting Structure-Based Methodologies. Altincekic N, Jores N, Löhr F, Richter C, Ehrhardt C, Blommers MJJ, Berg H, Öztürk S, Gande SL, Linhard V, Orts J, Abi Saad MJ, Bütikofer M, Kaderli J, Karlsson BG, Brath U, Hedenström M, Gröbner G, Sauer UH, Perrakis A, Langer J, Banci L, Cantini F, Fragai M, Grifagni D, Barthel T, Wollenhaupt J, Weiss MS, Robertson A, Bax A, Sreeramulu S, Schwalbe H. ACS Chem Biol 19 563-574 (2024)
  142. Thermal Stability and Utility of Dienes as Protecting Groups for Acrylamides. Hooper AR, Burns AS. ACS Med Chem Lett 13 833-840 (2022)
  143. Use of pyridazinediones for tuneable and reversible covalent cysteine modification applied to peptides, proteins and hydrogels. Rochet LNC, Bahou C, Wojciechowski JP, Koutsopetras I, Britton P, Spears RJ, Thanasi IA, Shao B, Zhong L, Bučar DK, Aliev AE, Porter MJ, Stevens MM, Baker JR, Chudasama V. Chem Sci 14 13743-13754 (2023)