4ddm Citations

Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery.

Proc Natl Acad Sci U S A 110 12984-9 (2013)
Related entries: 4ddh, 4ddk, 4de5, 4ef6, 4efk, 4fzj, 4g5f, 4g5y

Cited: 54 times
EuropePMC logo PMID: 23872845

Abstract

In fragment-based drug discovery, the weak affinities exhibited by fragments pose significant challenges for screening. Biophysical techniques are used to address this challenge, but there is no clear consensus on which cascade of methods is best suited to identify fragment hits that ultimately translate into bound X-ray structures and provide bona fide starting points for synthesis. We have benchmarked an integrated biophysical approach for fragment screening and validation against Mycobacterium tuberculosis pantothenate synthetase. A primary screen of 1,250 fragments library was performed by thermal shift, followed by secondary screen using one-dimensional NMR spectroscopy (water ligand observed gradient spectroscopy and saturation transfer difference binding experiments) and ultimate hit validation by isothermal titration calorimetry and X-ray crystallography. Our multibiophysical approach identified three distinct binding sites for fragments and laid a solid foundation for successful structure-based elaboration into potent inhibitors.

Articles - 4ddm mentioned but not cited (1)

  1. Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Silvestre HL, Blundell TL, Abell C, Ciulli A. Proc Natl Acad Sci U S A 110 12984-12989 (2013)


Reviews citing this publication (21)

  1. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J. Signal Transduct Target Ther 5 213 (2020)
  2. Oncogenic protein interfaces: small molecules, big challenges. Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW. Nat Rev Cancer 14 248-262 (2014)
  3. Biophysics in drug discovery: impact, challenges and opportunities. Renaud JP, Chung CW, Danielson UH, Egner U, Hennig M, Hubbard RE, Nar H. Nat Rev Drug Discov 15 679-698 (2016)
  4. NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules. Gossert AD, Jahnke W. Prog Nucl Magn Reson Spectrosc 97 82-125 (2016)
  5. The tuberculosis drug discovery and development pipeline and emerging drug targets. Mdluli K, Kaneko T, Upton A. Cold Spring Harb Perspect Med 5 a021154 (2015)
  6. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, Andrade CH, Silva FP. Front Chem 8 93 (2020)
  7. Concepts and Core Principles of Fragment-Based Drug Design. Kirsch P, Hartman AM, Hirsch AKH, Empting M. Molecules 24 E4309 (2019)
  8. Successful generation of structural information for fragment-based drug discovery. Öster L, Tapani S, Xue Y, Käck H. Drug Discov Today 20 1104-1111 (2015)
  9. Protein-protein interactions as antibiotic targets: A medicinal chemistry perspective. Cossar PJ, Lewis PJ, McCluskey A. Med Res Rev 40 469-494 (2020)
  10. Tuberculosis drug discovery and emerging targets. Mdluli K, Kaneko T, Upton A. Ann N Y Acad Sci 1323 56-75 (2014)
  11. Dual-pharmacophore DNA-encoded chemical libraries. Scheuermann J, Neri D. Curr Opin Chem Biol 26 99-103 (2015)
  12. Targeting tuberculosis using structure-guided fragment-based drug design. Mendes V, Blundell TL. Drug Discov Today 22 546-554 (2017)
  13. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Butman HS, Kotzé TJ, Dowd CS, Strauss E. Front Cell Infect Microbiol 10 605662 (2020)
  14. Biophysics: for HTS hit validation, chemical lead optimization, and beyond. Genick CC, Wright SK. Expert Opin Drug Discov 12 897-907 (2017)
  15. Fragment-based approaches to TB drugs. Marchetti C, Chan DSH, Coyne AG, Abell C. Parasitology 145 184-195 (2018)
  16. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery. Williams G, Ferenczy GG, Ulander J, Keserű GM. Drug Discov Today 22 681-689 (2017)
  17. Biophysical Survey of Small-Molecule β-Catenin Inhibitors: A Cautionary Tale. McCoy MA, Spicer D, Wells N, Hoogewijs K, Fiedler M, Baud MGJ. J Med Chem 65 7246-7261 (2022)
  18. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. Mol Biomed 3 48 (2022)
  19. [Biophysical Analysis of the Protein-Small Molecule Interactions to Develop Small Molecule Drug Discovery]. Nagatoishi S, Caaveiro JMM, Tsumoto K. Yakugaku Zasshi 138 1033-1041 (2018)
  20. [Fragment-based screening: a promising avenue for drug design]. Krimm I. Med Sci (Paris) 31 197-202 (2015)
  21. Forces Driving a Magic Bullet to Its Target: Revisiting the Role of Thermodynamics in Drug Design, Development, and Optimization. Minetti CA, Remeta DP. Life (Basel) 12 1438 (2022)

Articles citing this publication (32)

  1. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, Singh P, Chi YI, Wang C, Dong C, Li W, Tao M, Napier D, Shi Q, Deng J, Evers BM, Zhou BP. Nat Commun 8 14228 (2017)
  2. Competitive binding of a benzimidazole to the histone-binding pocket of the Pygo PHD finger. Miller TC, Rutherford TJ, Birchall K, Chugh J, Fiedler M, Bienz M. ACS Chem Biol 9 2864-2874 (2014)
  3. Structure-based Design Targeted at LOX-1, a Receptor for Oxidized Low-Density Lipoprotein. Thakkar S, Wang X, Khaidakov M, Dai Y, Gokulan K, Mehta JL, Varughese KI. Sci Rep 5 16740 (2015)
  4. Increasing chemical space coverage by combining empirical and computational fragment screens. Barelier S, Eidam O, Fish I, Hollander J, Figaroa F, Nachane R, Irwin JJ, Shoichet BK, Siegal G. ACS Chem Biol 9 1528-1535 (2014)
  5. One Question, Multiple Answers: Biochemical and Biophysical Screening Methods Retrieve Deviating Fragment Hit Lists. Schiebel J, Radeva N, Köster H, Metz A, Krotzky T, Kuhnert M, Diederich WE, Heine A, Neumann L, Atmanene C, Roecklin D, Vivat-Hannah V, Renaud JP, Meinecke R, Schlinck N, Sitte A, Popp F, Zeeb M, Klebe G. ChemMedChem 10 1511-1521 (2015)
  6. Current and emerging opportunities for molecular simulations in structure-based drug design. Michel J. Phys Chem Chem Phys 16 4465-4477 (2014)
  7. Substrate deconstruction and the nonadditivity of enzyme recognition. Barelier S, Cummings JA, Rauwerdink AM, Hitchcock DS, Farelli JD, Almo SC, Raushel FM, Allen KN, Shoichet BK. J Am Chem Soc 136 7374-7382 (2014)
  8. A ligand-observed mass spectrometry approach integrated into the fragment based lead discovery pipeline. Chen X, Qin S, Chen S, Li J, Li L, Wang Z, Wang Q, Lin J, Yang C, Shui W. Sci Rep 5 8361 (2015)
  9. Optimization of Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase Based on Group Efficiency Analysis. Hung AW, Silvestre HL, Wen S, George GP, Boland J, Blundell TL, Ciulli A, Abell C. ChemMedChem 11 38-42 (2016)
  10. Allosteric Targeting of the Fanconi Anemia Ubiquitin-Conjugating Enzyme Ube2T by Fragment Screening. Morreale FE, Bortoluzzi A, Chaugule VK, Arkinson C, Walden H, Ciulli A. J Med Chem 60 4093-4098 (2017)
  11. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach. Amato A, Lucas X, Bortoluzzi A, Wright D, Ciulli A. ACS Chem Biol 13 915-921 (2018)
  12. Targeting a dynamic protein-protein interaction: fragment screening against the malaria myosin A motor complex. Douse CH, Vrielink N, Wenlin Z, Cota E, Tate EW. ChemMedChem 10 134-143 (2015)
  13. 1D NMR WaterLOGSY as an efficient method for fragment-based lead discovery. Raingeval C, Cala O, Brion B, Le Borgne M, Hubbard RE, Krimm I. J Enzyme Inhib Med Chem 34 1218-1225 (2019)
  14. Crystal structure of an arginase-like protein from Trypanosoma brucei that evolved without a binuclear manganese cluster. Hai Y, Kerkhoven EJ, Barrett MP, Christianson DW. Biochemistry 54 458-471 (2015)
  15. Fragment- and structure-based drug discovery for developing therapeutic agents targeting the DNA Damage Response. Wilson DM, Deacon AM, Duncton MAJ, Pellicena P, Georgiadis MM, Yeh AP, Arvai AS, Moiani D, Tainer JA, Das D. Prog Biophys Mol Biol 163 130-142 (2021)
  16. Reaction intermediate analogues as bisubstrate inhibitors of pantothenate synthetase. Xu Z, Yin W, Martinelli LK, Evans J, Chen J, Yu Y, Wilson DJ, Mizrahi V, Qiao C, Aldrich CC. Bioorg Med Chem 22 1726-1735 (2014)
  17. Fragment-based screening identifies novel targets for inhibitors of conjugative transfer of antimicrobial resistance by plasmid pKM101. Casu B, Arya T, Bessette B, Baron C. Sci Rep 7 14907 (2017)
  18. Structure-guided design of thiazolidine derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Devi PB, Samala G, Sridevi JP, Saxena S, Alvala M, Salina EG, Sriram D, Yogeeswari P. ChemMedChem 9 2538-2547 (2014)
  19. Surface Probing by Fragment-Based Screening and Computational Methods Identifies Ligandable Pockets on the von Hippel-Lindau (VHL) E3 Ubiquitin Ligase. Lucas X, Van Molle I, Ciulli A. J Med Chem 61 7387-7393 (2018)
  20. A combinatorial biophysical approach; FTSA and SPR for identifying small molecule ligands and PAINs. Redhead M, Satchell R, Morkūnaitė V, Swift D, Petrauskas V, Golding E, Onions S, Matulis D, Unitt J. Anal Biochem 479 63-73 (2015)
  21. Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening. La J, Latham CF, Tinetti RN, Johnson A, Tyssen D, Huber KD, Sluis-Cremer N, Simpson JS, Headey SJ, Chalmers DK, Tachedjian G. Proc Natl Acad Sci U S A 112 6979-6984 (2015)
  22. Targeting Bacillosamine Biosynthesis in Bacterial Pathogens: Development of Inhibitors to a Bacterial Amino-Sugar Acetyltransferase from Campylobacter jejuni. De Schutter JW, Morrison JP, Morrison MJ, Ciulli A, Imperiali B. J Med Chem 60 2099-2118 (2017)
  23. Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1. Mohanty B, Rimmer K, McMahon RM, Headey SJ, Vazirani M, Shouldice SR, Coinçon M, Tay S, Morton CJ, Simpson JS, Martin JL, Scanlon MJ. PLoS One 12 e0173436 (2017)
  24. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Br J Pharmacol 174 2209-2224 (2017)
  25. Confirmation of a Protein-Protein Interaction in the Pantothenate Biosynthetic Pathway by Using Sortase-Mediated Labelling. Morrison PM, Balmforth MR, Ness SW, Williamson DJ, Rugen MD, Turnbull WB, Webb ME. Chembiochem 17 753-758 (2016)
  26. Peptide-Directed Binding for the Discovery of Modulators of α-Helix-Mediated Protein-Protein Interactions: Proof-of-Concept Studies with the Apoptosis Regulator Mcl-1. Beekman AM, O'Connell MA, Howell LA. Angew Chem Int Ed Engl 56 10446-10450 (2017)
  27. Fragments as Novel Starting Points for tRNA-Guanine Transglycosylase Inhibitors Found by Alternative Screening Strategies. Hassaan E, Eriksson PO, Geschwindner S, Heine A, Klebe G. ChemMedChem 15 324-337 (2020)
  28. Hot-spot identification on a broad class of proteins and RNA suggest unifying principles of molecular recognition. Kulp JL, Cloudsdale IS, Kulp JL, Guarnieri F. PLoS One 12 e0183327 (2017)
  29. Deploying Fluorescent Nucleoside Analogues for High-Throughput Inhibitor Screening. Seebald L, Madec AGE, Imperiali B. Chembiochem 21 108-112 (2020)
  30. Small molecule-based targeting of TTD-A dimerization to control TFIIH transcriptional activity represents a potential strategy for anticancer therapy. Gervais V, Muller I, Mari PO, Mourcet A, Movellan KT, Ramos P, Marcoux J, Guillet V, Javaid S, Burlet-Schiltz O, Czaplicki G, Milon A, Giglia-Mari G. J Biol Chem 293 14974-14988 (2018)
  31. Reducing the Flexibility of Type II Dehydroquinase for Inhibition: A Fragment-Based Approach and Molecular Dynamics Study. Peón A, Robles A, Blanco B, Convertino M, Thompson P, Hawkins AR, Caflisch A, González-Bello C. ChemMedChem 12 1512-1524 (2017)
  32. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD. Hetényi A, Hegedűs Z, Fajka-Boja R, Monostori É, Kövér KE, Martinek TA. J Biomol NMR 66 227-232 (2016)