4dow Citations

The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome.

OpenAccess logo Nature 484 115-9 (2012)
Cited: 215 times
EuropePMC logo PMID: 22398447

Abstract

The recognition of distinctly modified histones by specialized 'effector' proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes. Effector proteins influence DNA-templated processes, including transcription, DNA recombination and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulate DNA replication. Here we show that ORC1--a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing--contains a bromo adjacent homology (BAH) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present within diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyl-lysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins, and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at replication origins, ORC chromatin loading and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the aetiology of Meier-Gorlin syndrome (MGS), a form of primordial dwarfism, and ORC1 depletion in zebrafish results in an MGS-like phenotype. We find that wild-type human ORC1, but not ORC1-H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyl-lysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal aetiological role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism.

Reviews - 4dow mentioned but not cited (4)

  1. Perceiving the epigenetic landscape through histone readers. Musselman CA, Lalonde ME, Côté J, Kutateladze TG. Nat. Struct. Mol. Biol. 19 1218-1227 (2012)
  2. Readout of epigenetic modifications. Patel DJ, Wang Z. Annu. Rev. Biochem. 82 81-118 (2013)
  3. A Structural Perspective on Readout of Epigenetic Histone and DNA Methylation Marks. Patel DJ. Cold Spring Harb Perspect Biol 8 a018754 (2016)
  4. Chemical and Biochemical Perspectives of Protein Lysine Methylation. Luo M. Chem. Rev. 118 6656-6705 (2018)

Articles - 4dow mentioned but not cited (6)

  1. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Kuo AJ, Song J, Cheung P, Ishibe-Murakami S, Yamazoe S, Chen JK, Patel DJ, Gozani O. Nature 484 115-119 (2012)
  2. The BAH domain of Rsc2 is a histone H3 binding domain. Chambers AL, Pearl LH, Oliver AW, Downs JA. Nucleic Acids Res. 41 9168-9182 (2013)
  3. Structural Basis for the Unique Multivalent Readout of Unmodified H3 Tail by Arabidopsis ORC1b BAH-PHD Cassette. Li S, Yang Z, Du X, Liu R, Wilkinson AW, Gozani O, Jacobsen SE, Patel DJ, Du J. Structure 24 486-494 (2016)
  4. A Meier-Gorlin syndrome mutation impairs the ORC1-nucleosome association. Zhang W, Sankaran S, Gozani O, Song J. ACS Chem. Biol. 10 1176-1180 (2015)
  5. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Zhang C, Du X, Tang K, Yang Z, Pan L, Zhu P, Luo J, Jiang Y, Zhang H, Wan H, Wang X, Wu F, Tao WA, He XJ, Zhang H, Bressan RA, Du J, Zhu JK. Nat Commun 9 4547 (2018)
  6. Identification of Key Residues for Enzymatic Carboxylate Reduction. Stolterfoht H, Steinkellner G, Schwendenwein D, Pavkov-Keller T, Gruber K, Winkler M. Front Microbiol 9 250 (2018)


Reviews citing this publication (81)

  1. DNA methylation pathways and their crosstalk with histone methylation. Du J, Johnson LM, Jacobsen SE, Patel DJ. Nat. Rev. Mol. Cell Biol. 16 519-532 (2015)
  2. Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Jørgensen S, Schotta G, Sørensen CS. Nucleic Acids Res. 41 2797-2806 (2013)
  3. DNA replication origin activation in space and time. Fragkos M, Ganier O, Coulombe P, Méchali M. Nat. Rev. Mol. Cell Biol. 16 360-374 (2015)
  4. Constitutive heterochromatin formation and transcription in mammals. Saksouk N, Simboeck E, Déjardin J. Epigenetics Chromatin 8 3 (2015)
  5. Quantitative proteomic analysis of histone modifications. Huang H, Lin S, Garcia BA, Zhao Y. Chem. Rev. 115 2376-2418 (2015)
  6. Mechanisms for initiating cellular DNA replication. Costa A, Hood IV, Berger JM. Annu. Rev. Biochem. 82 25-54 (2013)
  7. DNA replication origins. Leonard AC, Méchali M. Cold Spring Harb Perspect Biol 5 a010116 (2013)
  8. Genetic and epigenetic determinants of DNA replication origins, position and activation. Méchali M, Yoshida K, Coulombe P, Pasero P. Curr. Opin. Genet. Dev. 23 124-131 (2013)
  9. Chromatin and DNA replication. MacAlpine DM, Almouzni G. Cold Spring Harb Perspect Biol 5 a010207 (2013)
  10. Helicase loading at chromosomal origins of replication. Bell SP, Kaguni JM. Cold Spring Harb Perspect Biol 5 (2013)
  11. Writing, erasing and reading histone lysine methylations. Hyun K, Jeon J, Park K, Kim J. Exp. Mol. Med. 49 e324 (2017)
  12. Histones: at the crossroads of peptide and protein chemistry. Müller MM, Muir TW. Chem. Rev. 115 2296-2349 (2015)
  13. Congenital microcephaly. Alcantara D, O'Driscoll M. Am J Med Genet C Semin Med Genet 166C 124-139 (2014)
  14. Structure and function insights into the NuRD chromatin remodeling complex. Torchy MP, Hamiche A, Klaholz BP. Cell. Mol. Life Sci. 72 2491-2507 (2015)
  15. The contribution of dormant origins to genome stability: from cell biology to human genetics. Alver RC, Chadha GS, Blow JJ. DNA Repair (Amst.) 19 182-189 (2014)
  16. Dormant origins, the licensing checkpoint, and the response to replicative stresses. McIntosh D, Blow JJ. Cold Spring Harb Perspect Biol 4 (2012)
  17. Control over DNA replication in time and space. Symeonidou IE, Taraviras S, Lygerou Z. FEBS Lett. 586 2803-2812 (2012)
  18. Histone lysine methylation and chromatin replication. Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A. Biochim. Biophys. Acta 1839 1433-1439 (2014)
  19. Peaks cloaked in the mist: the landscape of mammalian replication origins. Hyrien O. J. Cell Biol. 208 147-160 (2015)
  20. DNA replication origins-where do we begin? Prioleau MN, MacAlpine DM. Genes Dev. 30 1683-1697 (2016)
  21. Structural and functional coordination of DNA and histone methylation. Cheng X. Cold Spring Harb Perspect Biol 6 (2014)
  22. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Semin. Cell Dev. Biol. 30 174-180 (2014)
  23. Structure and function of the BAH domain in chromatin biology. Yang N, Xu RM. Crit. Rev. Biochem. Mol. Biol. 48 211-221 (2013)
  24. Hitting the 'mark': interpreting lysine methylation in the context of active transcription. Wozniak GG, Strahl BD. Biochim. Biophys. Acta 1839 1353-1361 (2014)
  25. Mechanisms and regulation of DNA replication initiation in eukaryotes. Parker MW, Botchan MR, Berger JM. Crit. Rev. Biochem. Mol. Biol. 52 107-144 (2017)
  26. Temporal and spatial regulation of eukaryotic DNA replication: from regulated initiation to genome-scale timing program. Renard-Guillet C, Kanoh Y, Shirahige K, Masai H. Semin. Cell Dev. Biol. 30 110-120 (2014)
  27. Epigenetic targets and drug discovery: part 1: histone methylation. Liu Y, Liu K, Qin S, Xu C, Min J. Pharmacol. Ther. 143 275-294 (2014)
  28. Mechanisms for initiating cellular DNA replication. Bleichert F, Botchan MR, Berger JM. Science 355 (2017)
  29. Writing and rewriting the epigenetic code of cancer cells: from engineered proteins to small molecules. Blancafort P, Jin J, Frye S. Mol. Pharmacol. 83 563-576 (2013)
  30. From structure to mechanism-understanding initiation of DNA replication. Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. Genes Dev. 31 1073-1088 (2017)
  31. Histone H4 Lysine 20 (H4K20) Methylation, Expanding the Signaling Potential of the Proteome One Methyl Moiety at a Time. van Nuland R, Gozani O. Mol. Cell Proteomics 15 755-764 (2016)
  32. Towards an understanding of the structure and function of MTA1. Millard CJ, Fairall L, Schwabe JW. Cancer Metastasis Rev. 33 857-867 (2014)
  33. Nuclear DNA replication initiation in kinetoplastid parasites: new insights into an ancient process. Tiengwe C, Marques CA, McCulloch R. Trends Parasitol. 30 27-36 (2014)
  34. Order from clutter: selective interactions at mammalian replication origins. Aladjem MI, Redon CE. Nat. Rev. Genet. 18 101-116 (2017)
  35. Epigenetic landscape for initiation of DNA replication. Sherstyuk VV, Shevchenko AI, Zakian SM. Chromosoma 123 183-199 (2014)
  36. Structure, expression and functions of MTA genes. Kumar R, Wang RA. Gene 582 112-121 (2016)
  37. Accessing the Inaccessible: The Organization, Transcription, Replication, and Repair of Heterochromatin in Plants. Feng W, Michaels SD. Annu. Rev. Genet. 49 439-459 (2015)
  38. Advances in Skeletal Dysplasia Genetics. Geister KA, Camper SA. Annu Rev Genomics Hum Genet 16 199-227 (2015)
  39. DNA replication and cancer: From dysfunctional replication origin activities to therapeutic opportunities. Boyer AS, Walter D, Sørensen CS. Semin. Cancer Biol. 37-38 16-25 (2016)
  40. Meier-Gorlin syndrome. de Munnik SA, Hoefsloot EH, Roukema J, Schoots J, Knoers NV, Brunner HG, Jackson AP, Bongers EM. Orphanet J Rare Dis 10 114 (2015)
  41. Histone-binding domains: strategies for discovery and characterization. Wilkinson AW, Gozani O. Biochim. Biophys. Acta 1839 669-675 (2014)
  42. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Pozo PN, Cook JG. Genes (Basel) 8 (2016)
  43. The architecture and function of the chromatin replication machinery. Miller TC, Costa A. Curr. Opin. Struct. Biol. 47 9-16 (2017)
  44. DNA Replication Origins and Fork Progression at Mammalian Telomeres. Higa M, Fujita M, Yoshida K. Genes (Basel) 8 (2017)
  45. Histone lysine methyltransferases in biology and disease. Husmann D, Gozani O. Nat Struct Mol Biol 26 880-889 (2019)
  46. One, two, three: how histone methylation is read. Fischle W. Epigenomics 4 641-653 (2012)
  47. Eukaryotic DNA replication: Orchestrated action of multi-subunit protein complexes. Kang S, Kang MS, Ryu E, Myung K. Mutat. Res. 809 58-69 (2018)
  48. Regulating DNA replication in plants. Sanchez Mde L, Costas C, Sequeira-Mendes J, Gutierrez C. Cold Spring Harb Perspect Biol 4 (2012)
  49. Systematic analysis of histone modification readout. Nikolov M, Fischle W. Mol Biosyst 9 182-194 (2013)
  50. DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression. Hua BL, Orr-Weaver TL. Genetics 207 29-47 (2017)
  51. DNA replication through a chromatin environment. Bellush JM, Whitehouse I. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (2017)
  52. Histone Lysine Methylation and Neurodevelopmental Disorders. Kim JH, Lee JH, Lee IS, Lee SB, Cho KS. Int J Mol Sci 18 (2017)
  53. The origin recognition complex in human diseases. Shen Z. Biosci. Rep. 33 (2013)
  54. Positive and Negative Regulation of DNA Replication Initiation. Ding Q, Koren A. Trends Genet 36 868-879 (2020)
  55. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. O'Driscoll M. J. Pathol. 241 192-207 (2017)
  56. MTA family of proteins in DNA damage response: mechanistic insights and potential applications. Li DQ, Yang Y, Kumar R. Cancer Metastasis Rev. 33 993-1000 (2014)
  57. Structure and mechanism of plant histone mark readers. Liu R, Li X, Chen W, Du J. Sci China Life Sci 61 170-177 (2018)
  58. Best practices for mapping replication origins in eukaryotic chromosomes. Besnard E, Desprat R, Ryan M, Kahli M, Aladjem MI, Lemaitre JM. Curr Protoc Cell Biol 64 22.18.1-13 (2014)
  59. Conservation and Variation in Strategies for DNA Replication of Kinetoplastid Nuclear Genomes. Marques CA, McCulloch R. Curr. Genomics 19 98-109 (2018)
  60. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. Shima N, Pederson KD. DNA Repair (Amst.) 56 166-173 (2017)
  61. Genome Duplication: The Heartbeat of Developing Organisms. DePamphilis ML. Curr. Top. Dev. Biol. 116 201-229 (2016)
  62. The Role of H3K4 Trimethylation in CpG Islands Hypermethylation in Cancer. Zardo G. Biomolecules 11 143 (2021)
  63. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Sheikh BN, Akhtar A. Nat. Rev. Genet. 20 7-23 (2019)
  64. Chromatin Landscaping At Mitotic Exit Orchestrates Genome Function. Shoaib M, Nair N, Sørensen CS. Front Genet 11 103 (2020)
  65. Controlling centriole numbers: Geminin family members as master regulators of centriole amplification and multiciliogenesis. Arbi M, Pefani DE, Taraviras S, Lygerou Z. Chromosoma 127 151-174 (2018)
  66. Histone modification and histone modification-targeted anti-cancer drugs in breast cancer: Fundamentals and beyond. Feng J, Meng X. Front Pharmacol 13 946811 (2022)
  67. The Role of the TSK/TONSL-H3.1 Pathway in Maintaining Genome Stability in Multicellular Eukaryotes. Huang YC, Yuan W, Jacob Y. Int J Mol Sci 23 9029 (2022)
  68. [How genomic approaches help the understanding of the initiation of DNA replication]. Miotto B. Med Sci (Paris) 33 143-150 (2017)
  69. A structural view of the initiators for chromosome replication. On KF, Jaremko M, Stillman B, Joshua-Tor L. Curr. Opin. Struct. Biol. 53 131-139 (2018)
  70. Chromatin and Nuclear Dynamics in the Maintenance of Replication Fork Integrity. Wootton J, Soutoglou E. Front Genet 12 773426 (2021)
  71. Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms. Schmit M, Bielinsky AK. Int J Mol Sci 22 (2021)
  72. Control of DNA Replication Initiation by Ubiquitin. Hernández-Carralero E, Cabrera E, Alonso-de Vega I, Hernández-Pérez S, Smits VAJ, Freire R. Cells 7 (2018)
  73. DNA replication and replication stress response in the context of nuclear architecture. González-Acosta D, Lopes M. Chromosoma (2023)
  74. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Nat Rev Drug Discov (2021)
  75. Histone post-translational modifications - cause and consequence of genome function. Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Nat Rev Genet (2022)
  76. Origins of DNA replication in eukaryotes. Hu Y, Stillman B. Mol Cell 83 352-372 (2023)
  77. Preventing excess replication origin activation to ensure genome stability. Thakur BL, Ray A, Redon CE, Aladjem MI. Trends Genet 38 169-181 (2022)
  78. The expanding genetic and clinical landscape associated with Meier-Gorlin syndrome. Nielsen-Dandoroff E, Ruegg MSG, Bicknell LS. Eur J Hum Genet (2023)
  79. The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis. Sheikh BN, Guhathakurta S, Akhtar A. EMBO Rep. (2019)
  80. The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis. Sheikh BN, Guhathakurta S, Akhtar A. EMBO Rep. 20 e47630 (2019)
  81. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Lee CSK, Weiβ M, Hamperl S. Nucleus 14 2229642 (2023)

Articles citing this publication (124)

  1. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM, Botuyan MV, Mer G, Greenberg RA. Nat. Struct. Mol. Biol. 20 317-325 (2013)
  2. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, Caro E, Vashisht AA, Terragni J, Chin HG, Tu A, Hetzel J, Wohlschlegel JA, Pradhan S, Patel DJ, Jacobsen SE. Cell 151 167-180 (2012)
  3. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, Karra K, Wong ED, Devarajan K, Daugherty AC, Kundaje AB, Mancini E, Hitz BC, Gupta R, Rando TA, Baker JC, Snyder MP, Cherry JM, Brunet A. Cell 158 673-688 (2014)
  4. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, Barsyte-Lovejoy D, Martinez JY, Bedford MT, Fuchs SM, Arrowsmith CH, Strahl BD. Nat. Struct. Mol. Biol. 19 1155-1160 (2012)
  5. Class I HDACs share a common mechanism of regulation by inositol phosphates. Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV, Fairall L, Schwabe JW. Mol. Cell 51 57-67 (2013)
  6. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, Cho J, Pineda CM, Murphy N, Daniels DL, Montagna C, Lewis PW, Glass K, Allis CD, Dyson NJ, Getz G, Whetstine JR. Cell 154 541-555 (2013)
  7. A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Moore KE, Carlson SM, Camp ND, Cheung P, James RG, Chua KF, Wolf-Yadlin A, Gozani O. Mol. Cell 50 444-456 (2013)
  8. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. James LI, Barsyte-Lovejoy D, Zhong N, Krichevsky L, Korboukh VK, Herold JM, MacNevin CJ, Norris JL, Sagum CA, Tempel W, Marcon E, Guo H, Gao C, Huang XP, Duan S, Emili A, Greenblatt JF, Kireev DB, Jin J, Janzen WP, Brown PJ, Bedford MT, Arrowsmith CH, Frye SV. Nat. Chem. Biol. 9 184-191 (2013)
  9. Histone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair. Hsiao KY, Mizzen CA. J Mol Cell Biol 5 157-165 (2013)
  10. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Rothbart SB, Dickson BM, Ong MS, Krajewski K, Houliston S, Kireev DB, Arrowsmith CH, Strahl BD. Genes Dev. 27 1288-1298 (2013)
  11. Genomic analysis of primordial dwarfism reveals novel disease genes. Shaheen R, Faqeih E, Ansari S, Abdel-Salam G, Al-Hassnan ZN, Al-Shidi T, Alomar R, Sogaty S, Alkuraya FS. Genome Res. 24 291-299 (2014)
  12. The role of PR-Set7 in replication licensing depends on Suv4-20h. Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla ME, Reinberg D. Genes Dev. 26 2580-2589 (2012)
  13. Crystal structure of the eukaryotic origin recognition complex. Bleichert F, Botchan MR, Berger JM. Nature 519 321-326 (2015)
  14. Methylation of histone H3 on lysine 79 associates with a group of replication origins and helps limit DNA replication once per cell cycle. Fu H, Maunakea AK, Martin MM, Huang L, Zhang Y, Ryan M, Kim R, Lin CM, Zhao K, Aladjem MI. PLoS Genet. 9 e1003542 (2013)
  15. H2A.Z facilitates licensing and activation of early replication origins. Long H, Zhang L, Lv M, Wen Z, Zhang W, Chen X, Zhang P, Li T, Chang L, Jin C, Wu G, Wang X, Yang F, Pei J, Chen P, Margueron R, Deng H, Zhu M, Li G. Nature 577 576-581 (2020)
  16. DNA replication and transcription programs respond to the same chromatin cues. Lubelsky Y, Prinz JA, DeNapoli L, Li Y, Belsky JA, MacAlpine DM. Genome Res. 24 1102-1114 (2014)
  17. ChromoHub: a data hub for navigators of chromatin-mediated signalling. Liu L, Zhen XT, Denton E, Marsden BD, Schapira M. Bioinformatics 28 2205-2206 (2012)
  18. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease. Nativio R, Lan Y, Donahue G, Sidoli S, Berson A, Srinivasan AR, Shcherbakova O, Amlie-Wolf A, Nie J, Cui X, He C, Wang LS, Garcia BA, Trojanowski JQ, Bonini NM, Berger SL. Nat Genet 52 1024-1035 (2020)
  19. Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Miotto B, Ji Z, Struhl K. Proc. Natl. Acad. Sci. U.S.A. 113 E4810-9 (2016)
  20. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Hossain M, Stillman B. Genes Dev. 26 1797-1810 (2012)
  21. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant. Dauber A, Golzio C, Guenot C, Jodelka FM, Kibaek M, Kjaergaard S, Leheup B, Martinet D, Nowaczyk MJ, Rosenfeld JA, Zeesman S, Zunich J, Beckmann JS, Hirschhorn JN, Hastings ML, Jacquemont S, Katsanis N. Am. J. Hum. Genet. 93 798-811 (2013)
  22. Insight into the architecture of the NuRD complex: structure of the RbAp48-MTA1 subcomplex. Alqarni SS, Murthy A, Zhang W, Przewloka MR, Silva AP, Watson AA, Lejon S, Pei XY, Smits AH, Kloet SL, Wang H, Shepherd NE, Stokes PH, Blobel GA, Vermeulen M, Glover DM, Mackay JP, Laue ED. J. Biol. Chem. 289 21844-21855 (2014)
  23. BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. Feng Y, Vlassis A, Roques C, Lalonde ME, González-Aguilera C, Lambert JP, Lee SB, Zhao X, Alabert C, Johansen JV, Paquet E, Yang XJ, Gingras AC, Côté J, Groth A. EMBO J. 35 176-192 (2016)
  24. Mechanism for full-length RNA processing of Arabidopsis genes containing intragenic heterochromatin. Saze H, Kitayama J, Takashima K, Miura S, Harukawa Y, Ito T, Kakutani T. Nat Commun 4 2301 (2013)
  25. A global assessment of cancer genomic alterations in epigenetic mechanisms. Shah MA, Denton EL, Arrowsmith CH, Lupien M, Schapira M. Epigenetics Chromatin 7 29 (2014)
  26. A subset of Drosophila Myc sites remain associated with mitotic chromosomes colocalized with insulator proteins. Yang J, Sung E, Donlin-Asp PG, Corces VG. Nat Commun 4 1464 (2013)
  27. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. PLoS Genet. 9 e1003798 (2013)
  28. Distinct mode of methylated lysine-4 of histone H3 recognition by tandem tudor-like domains of Spindlin1. Yang N, Wang W, Wang Y, Wang M, Zhao Q, Rao Z, Zhu B, Xu RM. Proc. Natl. Acad. Sci. U.S.A. 109 17954-17959 (2012)
  29. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae. Rizzardi LF, Dorn ES, Strahl BD, Cook JG. Genetics 192 371-384 (2012)
  30. Independent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome. Brideau NJ, Coker H, Gendrel AV, Siebert CA, Bezstarosti K, Demmers J, Poot RA, Nesterova TB, Brockdorff N. Mol. Cell. Biol. 35 4053-4068 (2015)
  31. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells. Li B, Su T, Ferrari R, Li JY, Kurdistani SK. Epigenetics 9 257-267 (2014)
  32. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication. Wu R, Wang Z, Zhang H, Gan H, Zhang Z. Nucleic Acids Res. 45 169-180 (2017)
  33. Meier-Gorlin syndrome and Wolf-Hirschhorn syndrome: two developmental disorders highlighting the importance of efficient DNA replication for normal development and neurogenesis. Kerzendorfer C, Colnaghi R, Abramowicz I, Carpenter G, O'Driscoll M. DNA Repair (Amst.) 12 637-644 (2013)
  34. Chemical basis for the recognition of trimethyllysine by epigenetic reader proteins. Kamps JJ, Huang J, Poater J, Xu C, Pieters BJ, Dong A, Min J, Sherman W, Beuming T, Matthias Bickelhaupt F, Li H, Mecinović J. Nat Commun 6 8911 (2015)
  35. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Southall SM, Cronin NB, Wilson JR. Nucleic Acids Res. 42 661-671 (2014)
  36. Depletion of Uhrf1 inhibits chromosomal DNA replication in Xenopus egg extracts. Taylor EM, Bonsu NM, Price RJ, Lindsay HD. Nucleic Acids Res. 41 7725-7737 (2013)
  37. Diminished origin-licensing capacity specifically sensitizes tumor cells to replication stress. Zimmerman KM, Jones RM, Petermann E, Jeggo PA. Mol. Cancer Res. 11 370-380 (2013)
  38. Identification of hidden relationships from the coupling of hydrophobic cluster analysis and domain architecture information. Faure G, Callebaut I. Bioinformatics 29 1726-1733 (2013)
  39. SHOOT GROWTH1 maintains Arabidopsis epigenomes by regulating IBM1. Coustham V, Vlad D, Deremetz A, Gy I, Cubillos FA, Kerdaffrec E, Loudet O, Bouché N. PLoS ONE 9 e84687 (2014)
  40. Concerted interaction between origin recognition complex (ORC), nucleosomes and replication origin DNA ensures stable ORC-origin binding. Hizume K, Yagura M, Araki H. Genes Cells 18 764-779 (2013)
  41. Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in Arabidopsis. Zhang YZ, Yuan J, Zhang L, Chen C, Wang Y, Zhang G, Peng L, Xie SS, Jiang J, Zhu JK, Du J, Duan CG. Nat Commun 11 6212 (2020)
  42. Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform. Wagner T, Greschik H, Burgahn T, Schmidtkunz K, Schott AK, McMillan J, Baranauskienė L, Xiong Y, Fedorov O, Jin J, Oppermann U, Matulis D, Schüle R, Jung M. Nucleic Acids Res. 44 e88 (2016)
  43. Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila. Li Y, Armstrong RL, Duronio RJ, MacAlpine DM. Nucleic Acids Res. 44 7204-7218 (2016)
  44. Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells. Kara N, Hossain M, Prasanth SG, Stillman B. J. Biol. Chem. 290 12355-12369 (2015)
  45. Structure of the active form of human origin recognition complex and its ATPase motor module. Tocilj A, On KF, Yuan Z, Sun J, Elkayam E, Li H, Stillman B, Joshua-Tor L. Elife 6 (2017)
  46. Alterations in gene array patterns in dendritic cells from aged humans. Cao JN, Agrawal A, Sharman E, Jia Z, Gupta S. PLoS ONE 9 e106471 (2014)
  47. Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication. Brustel J, Kirstein N, Izard F, Grimaud C, Prorok P, Cayrou C, Schotta G, Abdelsamie AF, Déjardin J, Méchali M, Baldacci G, Sardet C, Cadoret JC, Schepers A, Julien E. EMBO J. 36 2726-2741 (2017)
  48. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability. Utani K, Fu H, Jang SM, Marks AB, Smith OK, Zhang Y, Redon CE, Shimizu N, Aladjem MI. Nucleic Acids Res. 45 7807-7824 (2017)
  49. Predictive QM/MM Modeling of Modulations in Protein-Protein Binding by Lysine Methylation. Rahman S, Wineman-Fisher V, Al-Hamdani Y, Tkatchenko A, Varma S. J Mol Biol 433 166745 (2021)
  50. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila. Liu J, Zimmer K, Rusch DB, Paranjape N, Podicheti R, Tang H, Calvi BR. Nucleic Acids Res. 43 8746-8761 (2015)
  51. DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Ren W, Fan H, Grimm SA, Kim JJ, Li L, Guo Y, Petell CJ, Tan XF, Zhang ZM, Coan JP, Yin J, Kim DI, Gao L, Cai L, Khudaverdyan N, Çetin B, Patel DJ, Wang Y, Cui Q, Strahl BD, Gozani O, Miller KM, O'Leary SE, Wade PA, Wang GG, Song J. Nat Commun 12 2490 (2021)
  52. Genome-wide analysis of the spatiotemporal regulation of firing and dormant replication origins in human cells. Sugimoto N, Maehara K, Yoshida K, Ohkawa Y, Fujita M. Nucleic Acids Res. 46 6683-6696 (2018)
  53. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Yang Z, Qian S, Scheid RN, Lu L, Chen X, Liu R, Du X, Lv X, Boersma MD, Scalf M, Smith LM, Denu JM, Du J, Zhong X. Nat. Genet. 50 1247-1253 (2018)
  54. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. Butenko A, Opperdoes FR, Flegontova O, Horák A, Hampl V, Keeling P, Gawryluk RMR, Tikhonenkov D, Flegontov P, Lukeš J. BMC Biol 18 23 (2020)
  55. H4K20me2 distinguishes pre-replicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2. Simonetta M, de Krijger I, Serrat J, Moatti N, Fortunato D, Hoekman L, Bleijerveld OB, Altelaar AFM, Jacobs JJL. Cell Cycle 17 124-136 (2018)
  56. Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Shanle EK, Shinsky SA, Bridgers JB, Bae N, Sagum C, Krajewski K, Rothbart SB, Bedford MT, Strahl BD. Epigenetics Chromatin 10 12 (2017)
  57. Human ORC/MCM density is low in active genes and correlates with replication time but does not delimit initiation zones. Kirstein N, Buschle A, Wu X, Krebs S, Blum H, Kremmer E, Vorberg IM, Hammerschmidt W, Lacroix L, Hyrien O, Audit B, Schepers A. Elife 10 e62161 (2021)
  58. MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication. Evans DL, Zhang H, Ham H, Pei H, Lee S, Kim J, Billadeau DD, Lou Z. Cell Cycle 15 95-105 (2016)
  59. Regulation of DNA replication and chromosomal polyploidy by the MLL-WDR5-RBBP5 methyltransferases. Lu F, Wu X, Yin F, Chia-Fang Lee C, Yu M, Mihaylov IS, Yu J, Sun H, Zhang H. Biol Open 5 1449-1460 (2016)
  60. The consequences of differential origin licensing dynamics in distinct chromatin environments. Mei L, Kedziora KM, Song EA, Purvis JE, Cook JG. Nucleic Acids Res 50 9601-9620 (2022)
  61. Opposing roles for DNA replication initiator proteins ORC1 and CDC6 in control of Cyclin E gene transcription. Hossain M, Stillman B. Elife 5 (2016)
  62. Specific binding of eukaryotic ORC to DNA replication origins depends on highly conserved basic residues. Kawakami H, Ohashi E, Kanamoto S, Tsurimoto T, Katayama T. Sci Rep 5 14929 (2015)
  63. The BAH domain of BAF180 is required for PCNA ubiquitination. Niimi A, Hopkins SR, Downs JA, Masutani C. Mutat. Res. 779 16-23 (2015)
  64. Letter The BAH domain of BAHD1 is a histone H3K27me3 reader. Zhao D, Zhang X, Guan H, Xiong X, Shi X, Deng H, Li H. Protein Cell 7 222-226 (2016)
  65. A conserved BAH module within mammalian BAHD1 connects H3K27me3 to Polycomb gene silencing. Fan H, Guo Y, Tsai YH, Storey AJ, Kim A, Gong W, Edmondson RD, Mackintosh SG, Li H, Byrum SD, Tackett AJ, Cai L, Wang GG. Nucleic Acids Res 49 4441-4455 (2021)
  66. Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2. Kim JY, Kwon YJ, Kim SI, Kim DY, Song JT, Seo HS. Front Plant Sci 6 1161 (2015)
  67. Dual recognition of H3K4me3 and H3K27me3 by a plant histone reader SHL. Qian S, Lv X, Scheid RN, Lu L, Yang Z, Chen W, Liu R, Boersma MD, Denu JM, Zhong X, Du J. Nat Commun 9 2425 (2018)
  68. High-Resolution Analysis of Antibodies to Post-Translational Modifications Using Peptide Nanosensor Microarrays. Lee JR, Haddon DJ, Gupta N, Price JV, Credo GM, Diep VK, Kim K, Hall DA, Baechler EC, Petri M, Varma M, Utz PJ, Wang SX. ACS Nano 10 10652-10660 (2016)
  69. Histone H4K20 methylation mediated chromatin compaction threshold ensures genome integrity by limiting DNA replication licensing. Shoaib M, Walter D, Gillespie PJ, Izard F, Fahrenkrog B, Lleres D, Lerdrup M, Johansen JV, Hansen K, Julien E, Blow JJ, Sørensen CS. Nat Commun 9 3704 (2018)
  70. Methyl-Induced Polarization Destabilizes the Noncovalent Interactions of N-Methylated Lysines. Rahman S, Wineman-Fisher V, Nagy PR, Al-Hamdani Y, Tkatchenko A, Varma S. Chemistry 27 11005-11014 (2021)
  71. Structural insight into the assembly and conformational activation of human origin recognition complex. Cheng J, Li N, Wang X, Hu J, Zhai Y, Gao N. Cell Discov 6 88 (2020)
  72. Structure of the origin recognition complex bound to DNA replication origin. Li N, Lam WH, Zhai Y, Cheng J, Cheng E, Zhao Y, Gao N, Tye BK. Nature 559 217-222 (2018)
  73. A dual role for the chromatin reader ORCA/LRWD1 in targeting the origin recognition complex to chromatin. Sahu S, Ekundayo BE, Kumar A, Bleichert F. EMBO J 42 e114654 (2023)
  74. Mechanically transduced immunosorbent assay to measure protein-protein interactions. Petell CJ, Randene K, Pappas M, Sandoval D, Strahl BD, Harrison JS, Steimel JP. Elife 10 e67525 (2021)
  75. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. Li S, Wasserman MR, Yurieva O, Bai L, O'Donnell ME, Liu S. Nat Commun 13 4947 (2022)
  76. Polo-like kinase 1 (PLK1)-dependent phosphorylation of methylenetetrahydrofolate reductase (MTHFR) regulates replication via histone methylation. Li X, Nai S, Ding Y, Geng Q, Zhu B, Yu K, Zhu WG, Dong MQ, Su XD, Xu X, Li J. Cell Cycle 16 1933-1942 (2017)
  77. Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger-type E3 ubiquitin ligase UHRF1. Du W, Dong Q, Zhang Z, Liu B, Zhou T, Xu RM, Wang H, Zhu B, Li Y. J Biol Chem 294 8907-8917 (2019)
  78. The Histone Variant H3.3 Is Enriched at Drosophila Amplicon Origins but Does Not Mark Them for Activation. Paranjape NP, Calvi BR. G3 (Bethesda) 6 1661-1671 (2016)
  79. The dynamic nature of the human origin recognition complex revealed through five cryoEM structures. Jaremko MJ, On KF, Thomas DR, Stillman B, Joshua-Tor L. Elife 9 (2020)
  80. The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Feng X, Noguchi Y, Barbon M, Stillman B, Speck C, Li H. Nat Commun 12 3883 (2021)
  81. A new class of disordered elements controls DNA replication through initiator self-assembly. Parker MW, Bell M, Mir M, Kao JA, Darzacq X, Botchan MR, Berger JM. Elife 8 (2019)
  82. Active transcription and Orc1 drive chromatin association of the AAA+ ATPase Pch2 during meiotic G2/prophase. Cardoso da Silva R, Villar-Fernández MA, Vader G. PLoS Genet 16 e1008905 (2020)
  83. BAHD1 serves as a critical regulator of breast cancer cell proliferation and invasion. Yang ZY, Yin SP, Ren Q, Lu DW, Tang T, Li Y, Sun YZ, Mo HB, Yin TJ, Yi ZY, Zhu JP, Zhang F, Chen H. Breast Cancer 29 516-530 (2022)
  84. H4K20me0 recognition by BRCA1-BARD1 directs homologous recombination to sister chromatids. Nakamura K, Saredi G, Becker JR, Foster BM, Nguyen NV, Beyer TE, Cesa LC, Faull PA, Lukauskas S, Frimurer T, Chapman JR, Bartke T, Groth A. Nat. Cell Biol. 21 311-318 (2019)
  85. Lrwd1 impacts cell proliferation and the silencing of repetitive DNA elements. Kang TZE, Wan YCE, Zhang Z, Chan KM. Genesis 60 e23475 (2022)
  86. One-Pot Quantitative Top- and Middle-Down Analysis of GluC-Digested Histone H4. Holt MV, Wang T, Young NL. J. Am. Soc. Mass Spectrom. 30 2514-2525 (2019)
  87. Origin Recognition Complex (ORC) Evolution Is Influenced by Global Gene Duplication/Loss Patterns in Eukaryotic Genomes. Ocaña-Pallarès E, Vergara Z, Desvoyes B, Tejada-Jimenez M, Romero-Jurado A, Galván A, Fernández E, Ruiz-Trillo I, Gutierrez C. Genome Biol Evol 12 3878-3889 (2020)
  88. Spindlin-1 recognizes methylations of K20 and R23 of histone H4 tail. Wang C, Zhan L, Wu M, Ma R, Yao J, Xiong Y, Pan Y, Guan S, Zhang X, Zang J. FEBS Lett 592 4098-4110 (2018)
  89. TRF2-mediated ORC recruitment underlies telomere stability upon DNA replication stress. Higa M, Matsuda Y, Fujii J, Sugimoto N, Yoshida K, Fujita M. Nucleic Acids Res 49 12234-12251 (2021)
  90. The human origin recognition complex is essential for pre-RC assembly, mitosis, and maintenance of nuclear structure. Chou HC, Bhalla K, Demerdesh OE, Klingbeil O, Hanington K, Aganezov S, Andrews P, Alsudani H, Chang K, Vakoc CR, Schatz MC, McCombie WR, Stillman B. Elife 10 (2021)
  91. The plant cell cycle: Pre-Replication complex formation and controls. Brasil JN, Costa CNM, Cabral LM, Ferreira PCG, Hemerly AS. Genet. Mol. Biol. 40 276-291 (2017)
  92. 5-hydroxymethylcytosine Marks Mammalian Origins Acting as a Barrier to Replication. Prikrylova T, Robertson J, Ferrucci F, Konorska D, Aanes H, Manaf A, Zhang B, Vågbø CB, Kuśnierczyk A, Gilljam KM, Løvkvam-Køster C, Otterlei M, Dahl JA, Enserink J, Klungland A, Robertson AB. Sci Rep 9 11065 (2019)
  93. A Degenerate Peptide Library Approach to Reveal Sequence Determinants of Methyllysine-Driven Protein Interactions. Kupai A, Vaughan RM, Dickson BM, Rothbart SB. Front Cell Dev Biol 8 241 (2020)
  94. A complete methyl-lysine binding aromatic cage constructed by two domains of PHF2. Horton JR, Zhou J, Chen Q, Zhang X, Bedford MT, Cheng X. J Biol Chem 299 102862 (2023)
  95. A potential histone-chaperone activity for the MIER1 histone deacetylase complex. Wang S, Fairall L, Pham TK, Ragan TJ, Vashi D, Collins MO, Dominguez C, Schwabe JWR. Nucleic Acids Res 51 6006-6019 (2023)
  96. Anatomy and evolution of a DNA replication origin. Yamamoto Y, Gustafson EA, Foulk MS, Smith HS, Gerbi SA. Chromosoma 130 199-214 (2021)
  97. BAHCC1 binds H3K27me3 via a conserved BAH module to mediate gene silencing and oncogenesis. Fan H, Lu J, Guo Y, Li D, Zhang ZM, Tsai YH, Pi WC, Ahn JH, Gong W, Xiang Y, Allison DF, Geng H, He S, Diao Y, Chen WY, Strahl BD, Cai L, Song J, Wang GG. Nat Genet 52 1384-1396 (2020)
  98. Chromatin loading of MCM hexamers is associated with di-/tri-methylation of histone H4K20 toward S phase entry. Hayashi-Takanaka Y, Hayashi Y, Hirano Y, Miyawaki-Kuwakado A, Ohkawa Y, Obuse C, Kimura H, Haraguchi T, Hiraoka Y. Nucleic Acids Res 49 12152-12166 (2021)
  99. DEFA1B inhibits ZIKV replication and retards cell cycle progression through interaction with ORC1. Li S, Zhu A, Ren K, Li S, Chen L. Life Sci 263 118564 (2020)
  100. DNA mimic foldamers affect chromatin composition and disturb cell cycle progression. Kleene V, Corvaglia V, Chacin E, Forne I, Konrad DB, Khosravani P, Douat C, Kurat CF, Huc I, Imhof A. Nucleic Acids Res 51 9629-9642 (2023)
  101. Dentofacial characteristics in a child with Meier-Gorlin syndrome: A rare case report. Morankar RG, Goyal A, Gauba K, Kapur A. Saudi Dent J 30 260-264 (2018)
  102. Distinct roles of Arabidopsis ORC1 proteins in DNA replication and heterochromatic H3K27me1 deposition. Vergara Z, Gomez MS, Desvoyes B, Sequeira-Mendes J, Masoud K, Costas C, Noir S, Caro E, Mora-Gil V, Genschik P, Gutierrez C. Nat Commun 14 1270 (2023)
  103. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H, Song J. Adv Exp Med Biol 1389 45-68 (2022)
  104. Heterochromatin compaction is regulated by Suv4-20h1 to maintains skeletal muscle stem cells quiescence. Machado L, Relaix F. Stem Cell Investig 3 23 (2016)
  105. Histone Readers and Their Roles in Cancer. Wen H, Shi X. Cancer Treat Res 190 245-272 (2023)
  106. Humanizing the yeast origin recognition complex. Lee CSK, Cheung MF, Li J, Zhao Y, Lam WH, Ho V, Rohs R, Zhai Y, Leung D, Tye BK. Nat Commun 12 33 (2021)
  107. Methylation of histone 4's lysine 20: a critical analysis of the state of the field. Corvalan AZ, Coller HA. Physiol Genomics 53 22-32 (2021)
  108. Missense Variants Reveal Functional Insights Into the Human ARID Family of Gene Regulators. Deák G, Cook AG. J Mol Biol 434 167529 (2022)
  109. Mobile origin-licensing factors confer resistance to conflicts with RNA polymerase. Scherr MJ, Wahab SA, Remus D, Duderstadt KE. Cell Rep 38 110531 (2022)
  110. Molecular basis of locus-specific H3K9 methylation catalyzed by SUVH6 in plants. Zhang J, Yuan J, Lin J, Chen L, You LY, Chen S, Peng L, Wang CH, Du J, Duan CG. Proc Natl Acad Sci U S A 120 e2208525120 (2023)
  111. Natural variation in Tiller Number 1 affects its interaction with TIF1 to regulate tillering in rice. Zhang Q, Xie J, Zhu X, Ma X, Yang T, Khan NU, Zhang S, Liu M, Li L, Liang Y, Pan Y, Li D, Li J, Li Z, Zhang H, Zhang Z. Plant Biotechnol J 21 1044-1057 (2023)
  112. Nonreplicative functions of the origin recognition complex. Popova VV, Brechalov AV, Georgieva SG, Kopytova DV. Nucleus 9 460-473 (2018)
  113. ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins. Mas AM, Goñi E, Ruiz de Los Mozos I, Arcas A, Statello L, González J, Blázquez L, Lee WTC, Gupta D, Sejas Á, Hoshina S, Armaos A, Tartaglia GG, Waga S, Ule J, Rothenberg E, Gómez M, Huarte M. Nat Commun 14 4447 (2023)
  114. ORChestra coordinates the replication and repair music. Liu D, Sonalkar J, Prasanth SG. Bioessays 45 e2200229 (2023)
  115. Origin recognition complex harbors an intrinsic nucleosome remodeling activity. Li S, Wasserman MR, Yurieva O, Bai L, O'Donnell ME, Liu S. Proc Natl Acad Sci U S A 119 e2211568119 (2022)
  116. Origins of DNA replication. Ekundayo B, Bleichert F. PLoS Genet. 15 e1008320 (2019)
  117. Structural basis of nucleosomal H4K20 recognition and methylation by SUV420H1 methyltransferase. Lin F, Zhang R, Shao W, Lei C, Ma M, Zhang Y, Wen Z, Li W. Cell Discov 9 120 (2023)
  118. Structural characterization of dicyanopyridine containing DNMT1-selective, non-nucleoside inhibitors. Horton JR, Pathuri S, Wong K, Ren R, Rueda L, Fosbenner DT, Heerding DA, McCabe MT, Pappalardi MB, Zhang X, King BW, Cheng X. Structure 30 793-802.e5 (2022)
  119. Structural mechanism for replication origin binding and remodeling by a metazoan origin recognition complex and its co-loader Cdc6. Schmidt JM, Bleichert F. Nat Commun 11 4263 (2020)
  120. Structure and Mechanism of Plant DNA Methyltransferases. Leichter SM, Du J, Zhong X. Adv Exp Med Biol 1389 137-157 (2022)
  121. Structure and function of the Orc1 BAH-nucleosome complex. De Ioannes P, Leon VA, Kuang Z, Wang M, Boeke JD, Hochwagen A, Armache KJ. Nat Commun 10 2894 (2019)
  122. TNRC18 engages H3K9me3 to mediate silencing of endogenous retrotransposons. Zhao S, Lu J, Pan B, Fan H, Byrum SD, Xu C, Kim A, Guo Y, Kanchi KL, Gong W, Sun T, Storey AJ, Burkholder NT, Mackintosh SG, Kuhlers PC, Edmondson RD, Strahl BD, Diao Y, Tackett AJ, Raab JR, Cai L, Song J, Wang GG. Nature 623 633-642 (2023)
  123. The Trithorax group protein ASH1 requires a combination of BAH domain and AT hooks, but not the SET domain, for mitotic chromatin binding and survival. Steffen PA, Altmutter C, Dworschak E, Junttila S, Gyenesei A, Zhu X, Kockmann T, Ringrose L. Chromosoma 130 215-234 (2021)
  124. The bromo-adjacent homology domains of PBRM1 associate with histone tails and contribute to PBAF-mediated gene regulation. Petell CJ, Burkholder NT, Ruiz PA, Skela J, Foreman JR, Southwell LE, Temple BR, Krajewski K, Strahl BD. J Biol Chem 299 104996 (2023)