4exm Citations

Structural engineering of a phage lysin that targets gram-negative pathogens.

Proc Natl Acad Sci U S A 109 9857-62 (2012)
Related entries: 4epa, 4epf, 4epi

Cited: 73 times
EuropePMC logo PMID: 22679291

Abstract

Bacterial pathogens are becoming increasingly resistant to antibiotics. As an alternative therapeutic strategy, phage therapy reagents containing purified viral lysins have been developed against gram-positive organisms but not against gram-negative organisms due to the inability of these types of drugs to cross the bacterial outer membrane. We solved the crystal structures of a Yersinia pestis outer membrane transporter called FyuA and a bacterial toxin called pesticin that targets this transporter. FyuA is a β-barrel membrane protein belonging to the family of TonB dependent transporters, whereas pesticin is a soluble protein with two domains, one that binds to FyuA and another that is structurally similar to phage T4 lysozyme. The structure of pesticin allowed us to design a phage therapy reagent comprised of the FyuA binding domain of pesticin fused to the N-terminus of T4 lysozyme. This hybrid toxin kills specific Yersinia and pathogenic E. coli strains and, importantly, can evade the pesticin immunity protein (Pim) giving it a distinct advantage over pesticin. Furthermore, because FyuA is required for virulence and is more common in pathogenic bacteria, the hybrid toxin also has the advantage of targeting primarily disease-causing bacteria rather than indiscriminately eliminating natural gut flora.

Reviews citing this publication (34)

  1. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Front Cell Infect Microbiol 3 90 (2013)
  2. Lysins: the arrival of pathogen-directed anti-infectives. Pastagia M, Schuch R, Fischetti VA, Huang DB. J Med Microbiol 62 1506-1516 (2013)
  3. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Rodríguez-Rubio L, Martínez B, Donovan DM, Rodríguez A, García P. Crit Rev Microbiol 39 427-434 (2013)
  4. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Briers Y, Lavigne R. Future Microbiol 10 377-390 (2015)
  5. Bacteriophages in Natural and Artificial Environments. Batinovic S, Wassef F, Knowler SA, Rice DTF, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR, Sobey CG, Chan HT, Seviour RJ, Petrovski S, Franks AE. Pathogens 8 E100 (2019)
  6. Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials. Vázquez R, García E, García P. Front Immunol 9 2252 (2018)
  7. Engineered bacteriophage lysins as novel anti-infectives. Yang H, Yu J, Wei H. Front Microbiol 5 542 (2014)
  8. Gram-Negative Bacterial Lysins. Ghose C, Euler CW. Antibiotics (Basel) 9 E74 (2020)
  9. Engineering of Phage-Derived Lytic Enzymes: Improving Their Potential as Antimicrobials. São-José C. Antibiotics (Basel) 7 E29 (2018)
  10. Phage-Based Applications in Synthetic Biology. Lemire S, Yehl KM, Lu TK. Annu Rev Virol 5 453-476 (2018)
  11. Therapeutic and prophylactic applications of bacteriophage components in modern medicine. Adhya S, Merril CR, Biswas B. Cold Spring Harb Perspect Med 4 a012518 (2014)
  12. Tools from viruses: bacteriophage successes and beyond. Henry M, Debarbieux L. Virology 434 151-161 (2012)
  13. Applications of Lysozyme, an Innate Immune Defense Factor, as an Alternative Antibiotic. Ferraboschi P, Ciceri S, Grisenti P. Antibiotics (Basel) 10 1534 (2021)
  14. Microbial Copper-binding Siderophores at the Host-Pathogen Interface. Koh EI, Henderson JP. J Biol Chem 290 18967-18974 (2015)
  15. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. Kim YC, Kim YC, Tarr AW, Penfold CN. Biochim Biophys Acta 1843 1717-1731 (2014)
  16. Phage Endolysins as Potential Antimicrobials against Multidrug Resistant Vibrio alginolyticus and Vibrio parahaemolyticus: Current Status of Research and Challenges Ahead. Matamp N, Bhat SG. Microorganisms 7 E84 (2019)
  17. Genetically modified bacteriophages in applied microbiology. Bárdy P, Pantůček R, Benešík M, Doškař J. J Appl Microbiol 121 618-633 (2016)
  18. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Chem Rev 121 5193-5239 (2021)
  19. Overview of the phytomedicine approaches against Helicobacter pylori. Vale FF, Oleastro M. World J Gastroenterol 20 5594-5609 (2014)
  20. Bacteriophage lambda display systems: developments and applications. Nicastro J, Sheldon K, Slavcev RA. Appl Microbiol Biotechnol 98 2853-2866 (2014)
  21. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Antibiotics (Basel) 10 1497 (2021)
  22. Managing urinary tract infections through phage therapy: a novel approach. Malik S, Sidhu PK, Rana JS, Nehra K. Folia Microbiol (Praha) 65 217-231 (2020)
  23. Helicobacter pylori-Mediated Oxidative Stress and Gastric Diseases: A Review. Han L, Shu X, Wang J. Front Microbiol 13 811258 (2022)
  24. Bacteriophages and Lysins as Possible Alternatives to Treat Antibiotic-Resistant Urinary Tract Infections. de Miguel T, Rama JLR, Sieiro C, Sánchez S, Villa TG. Antibiotics (Basel) 9 E466 (2020)
  25. Tools and Approaches for Dissecting Protein Bacteriocin Import in Gram-Negative Bacteria. Atanaskovic I, Kleanthous C. Front Microbiol 10 646 (2019)
  26. Antibiotic Therapy of Plague: A Review. Sebbane F, Lemaître N. Biomolecules 11 724 (2021)
  27. Current Status of Endolysin-Based Treatments against Gram-Negative Bacteria. Gontijo MTP, Jorge GP, Brocchi M. Antibiotics (Basel) 10 1143 (2021)
  28. Bacteriocins Targeting Gram-Negative Phytopathogenic Bacteria: Plantibiotics of the Future. Rooney WM, Chai R, Milner JJ, Walker D. Front Microbiol 11 575981 (2020)
  29. Biocatalytic Nanocomposites for Combating Bacterial Pathogens. Wu X, Kwon SJ, Kim J, Kane RS, Dordick JS. Annu Rev Chem Biomol Eng 8 87-113 (2017)
  30. Application of Bacteriophages to Limit Campylobacter in Poultry Production. Olson EG, Micciche AC, Rothrock MJ, Yang Y, Ricke SC. Front Microbiol 12 458721 (2021)
  31. Phage Therapy: A Different Approach to Fight Bacterial Infections. Hibstu Z, Belew H, Akelew Y, Mengist HM. Biologics 16 173-186 (2022)
  32. Protein import and export across the bacterial outer membrane. Guérin J, Buchanan SK. Curr Opin Struct Biol 69 55-62 (2021)
  33. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Khan FM, Chen JH, Zhang R, Liu B. Front Microbiol 14 1259210 (2023)
  34. Engineered phage enzymes against drug-resistant pathogens: a review on advances and applications. Hassannia M, Naderifar M, Salamy S, Akbarizadeh MR, Mohebi S, Moghadam MT. Bioprocess Biosyst Eng (2023)

Articles citing this publication (39)

  1. Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens. Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, Oliveira H, Azeredo J, Verween G, Pirnay JP, Miller S, Volckaert G, Lavigne R. mBio 5 e01379-14 (2014)
  2. Novel phage lysin capable of killing the multidrug-resistant gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, Schuch R, Fischetti VA. Antimicrob Agents Chemother 59 1983-1991 (2015)
  3. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay JP, Defraine V, Michiels J, Cenens W, Aertsen A, Miller S, Lavigne R. Antimicrob Agents Chemother 58 3774-3784 (2014)
  4. Novel Engineered Peptides of a Phage Lysin as Effective Antimicrobials against Multidrug-Resistant Acinetobacter baumannii. Thandar M, Lood R, Winer BY, Deutsch DR, Euler CW, Fischetti VA. Antimicrob Agents Chemother 60 2671-2679 (2016)
  5. Copper import in Escherichia coli by the yersiniabactin metallophore system. Koh EI, Robinson AE, Bandara N, Rogers BE, Henderson JP. Nat Chem Biol 13 1016-1021 (2017)
  6. Improving the lethal effect of cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Díez-Martínez R, de Paz HD, Bustamante N, García E, Menéndez M, García P. Antimicrob Agents Chemother 57 5355-5365 (2013)
  7. Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Rodríguez-Rubio L, Gutiérrez D, Donovan DM, Martínez B, Rodríguez A, García P. Crit Rev Biotechnol 36 542-552 (2016)
  8. Metal selectivity by the virulence-associated yersiniabactin metallophore system. Koh EI, Hung CS, Parker KS, Crowley JR, Giblin DE, Henderson JP. Metallomics 7 1011-1022 (2015)
  9. Blocking yersiniabactin import attenuates extraintestinal pathogenic Escherichia coli in cystitis and pyelonephritis and represents a novel target to prevent urinary tract infection. Brumbaugh AR, Smith SN, Subashchandrabose S, Himpsl SD, Hazen TH, Rasko DA, Mobley HL. Infect Immun 83 1443-1450 (2015)
  10. Lysocins: Bioengineered Antimicrobials That Deliver Lysins across the Outer Membrane of Gram-Negative Bacteria. Heselpoth RD, Euler CW, Schuch R, Fischetti VA. Antimicrob Agents Chemother 63 e00342-19 (2019)
  11. Antibacterial Activity of a Novel Peptide-Modified Lysin Against Acinetobacter baumannii and Pseudomonas aeruginosa. Yang H, Wang M, Yu J, Wei H. Front Microbiol 6 1471 (2015)
  12. Identification and characterisation of the putative phage-related endolysins through full genome sequence analysis in Acinetobacter baumannii ATCC 17978. Lai MJ, Soo PC, Lin NT, Hu A, Chen YJ, Chen LK, Chang KC. Int J Antimicrob Agents 42 141-148 (2013)
  13. Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel. Robinson AE, Lowe JE, Koh EI, Henderson JP. J Biol Chem 293 14953-14961 (2018)
  14. Antibacterial Activity of Stenotrophomonas maltophilia Endolysin P28 against both Gram-positive and Gram-negative Bacteria. Dong H, Zhu C, Chen J, Ye X, Huang YP. Front Microbiol 6 1299 (2015)
  15. Structure of the atypical bacteriocin pectocin M2 implies a novel mechanism of protein uptake. Grinter R, Josts I, Zeth K, Roszak AW, McCaughey LC, Cogdell RJ, Milner JJ, Kelly SM, Byron O, Walker D. Mol Microbiol 93 234-246 (2014)
  16. The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly. Yan G, Liu J, Ma Q, Zhu R, Guo Z, Gao C, Wang S, Yu L, Gu J, Hu D, Han W, Du R, Yang J, Lei L. Antonie Van Leeuwenhoek 110 1627-1635 (2017)
  17. The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region. Wang S, Gu J, Lv M, Guo Z, Yan G, Yu L, Du C, Feng X, Han W, Sun C, Lei L. J Microbiol 55 403-408 (2017)
  18. Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis. Lukacik P, Barnard TJ, Buchanan SK. Biochem Soc Trans 40 1503-1506 (2012)
  19. Molecular dissection of phage lysin PlySs2: integrity of the catalytic and cell wall binding domains is essential for its broad lytic activity. Huang Y, Yang H, Yu J, Wei H. Virol Sin 30 45-51 (2015)
  20. Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C terminus. Ma Q, Guo Z, Gao C, Zhu R, Wang S, Yu L, Qin W, Xia X, Gu J, Yan G, Lei L. Antonie Van Leeuwenhoek 110 347-355 (2017)
  21. The Yersiniabactin-Associated ATP Binding Cassette Proteins YbtP and YbtQ Enhance Escherichia coli Fitness during High-Titer Cystitis. Koh EI, Hung CS, Henderson JP. Infect Immun 84 1312-1319 (2016)
  22. Cannabis sativa CBD Extract Shows Promising Antibacterial Activity against Salmonella typhimurium and S. newington. Gildea L, Ayariga JA, Ajayi OS, Xu J, Villafane R, Samuel-Foo M. Molecules 27 2669 (2022)
  23. Network Analysis Reveals Sex- and Antibiotic Resistance-Associated Antivirulence Targets in Clinical Uropathogens. Parker KS, Wilson JD, Marschall J, Mucha PJ, Henderson JP. ACS Infect Dis 1 523-532 (2015)
  24. Cell Wall-active Bacteriocins and Their Applications Beyond Antibiotic Activity. Roces C, Rodríguez A, Martínez B. Probiotics Antimicrob Proteins 4 259-272 (2012)
  25. Fluorescent sensors of siderophores produced by bacterial pathogens. Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA, Marcondes Dos Santos N, Price SL, Lawrenz MB, Actis LA, Marques M, Russo TA, Newton SM, Klebba PE. J Biol Chem 298 101651 (2022)
  26. Infection therapy: the problem of drug resistance - and possible solutions. Brüssow H. Microb Biotechnol 10 1041-1046 (2017)
  27. Structural basis for recognition of the type VI spike protein VgrG3 by a cognate immunity protein. Zhang J, Zhang H, Gao Z, Hu H, Dong C, Dong YH. FEBS Lett 588 1891-1898 (2014)
  28. The Yersinia High-Pathogenicity Island Encodes a Siderophore-Dependent Copper Response System in Uropathogenic Escherichia coli. Katumba GL, Tran H, Henderson JP. mBio 13 e0239121 (2022)
  29. Cannabis sativa CBD Extract Exhibits Synergy with Broad-Spectrum Antibiotics against Salmonella enterica subsp. Enterica serovar typhimurium. Gildea L, Ayariga JA, Xu J, Villafane R, Robertson BK, Samuel-Foo M, Ajayi OS. Microorganisms 10 2360 (2022)
  30. Conformational rearrangements in the N-domain of Escherichia coli FepA during ferric enterobactin transport. Majumdar A, Trinh V, Moore KJ, Smallwood CR, Kumar A, Yang T, Scott DC, Long NJ, Newton SM, Klebba PE. J Biol Chem 295 4974-4984 (2020)
  31. Developing Innolysins Against Campylobacter jejuni Using a Novel Prophage Receptor-Binding Protein. Zampara A, Sørensen MCH, Gencay YE, Grimon D, Kristiansen SH, Jørgensen LS, Kristensen JR, Briers Y, Elsser-Gravesen A, Brøndsted L. Front Microbiol 12 619028 (2021)
  32. P22 Phage Shows Promising Antibacterial Activity under Pathophysiological Conditions. Gildea L, Ayariga JA, Robertson BK, Villafane R. Arch Microbiol Immunol 6 81-100 (2022)
  33. Chimeric bacteriocin S5-PmnH engineered by domain swapping efficiently controls Pseudomonas aeruginosa infection in murine keratitis and lung models. Paškevičius Š, Dapkutė V, Misiūnas A, Balzaris M, Thommes P, Sattar A, Gleba Y, Ražanskienė A. Sci Rep 12 5865 (2022)
  34. How bugs kill bugs: progress and challenges in bacteriocin research. Penfold CN, Walker D, Kleanthous C. Biochem Soc Trans 40 1433-1437 (2012)
  35. Structure and uptake mechanism of bacteriocins targeting peptidoglycan renewal. Zeth K. Biochem Soc Trans 40 1560-1565 (2012)
  36. An Engineered Multimodular Enzybiotic against Methicillin-Resistant Staphylococcus aureus. Manoharadas S, Altaf M, Alrefaei AF, Ahmad N, Althaf Hussain S, Al-Rayes BF. Life (Basel) 11 1384 (2021)
  37. Antimicrobials: A killer hybrid. Kåhrström CT. Nat Rev Microbiol 10 520-521 (2012)
  38. Attenuation of Yersinia pestis fyuA Mutants Caused by Iron Uptake Inhibition and Decreased Survivability in Macrophages. Chen Y, Song K, Chen X, Li Y, Lv R, Zhang Q, Cui Y, Bi Y, Han Y, Tan Y, Du Z, Yang R, Qi Z, Song Y. Front Cell Infect Microbiol 12 874773 (2022)
  39. PlyKp104, a Novel Phage Lysin for the Treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Other Gram-Negative ESKAPE Pathogens. Euler CW, Raz A, Hernandez A, Serrano A, Xu S, Andersson M, Zou G, Zhang Y, Fischetti VA, Li J. Antimicrob Agents Chemother 67 e0151922 (2023)