4f7b Citations

Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36.

Abstract

Members of the CD36 superfamily of scavenger receptor proteins are important regulators of lipid metabolism and innate immunity. They recognize normal and modified lipoproteins, as well as pathogen-associated molecular patterns. The family consists of three members: SR-BI (which delivers cholesterol to the liver and steroidogenic organs and is a co-receptor for hepatitis C virus), LIMP-2/LGP85 (which mediates lysosomal delivery of β-glucocerebrosidase and serves as a receptor for enterovirus 71 and coxsackieviruses) and CD36 (a fatty-acid transporter and receptor for phagocytosis of effete cells and Plasmodium-infected erythrocytes). Notably, CD36 is also a receptor for modified lipoproteins and β-amyloid, and has been implicated in the pathogenesis of atherosclerosis and of Alzheimer's disease. Despite their prominent roles in health and disease, understanding the function and abnormalities of the CD36 family members has been hampered by the paucity of information about their structure. Here we determine the crystal structure of LIMP-2 and infer, by homology modelling, the structure of SR-BI and CD36. LIMP-2 shows a helical bundle where β-glucocerebrosidase binds, and where ligands are most likely to bind to SR-BI and CD36. Remarkably, the crystal structure also shows the existence of a large cavity that traverses the entire length of the molecule. Mutagenesis of SR-BI indicates that the cavity serves as a tunnel through which cholesterol(esters) are delivered from the bound lipoprotein to the outer leaflet of the plasma membrane. We provide evidence supporting a model whereby lipidic constituents of the ligands attached to the receptor surface are handed off to the membrane through the tunnel, accounting for the selective lipid transfer characteristic of SR-BI and CD36.

Reviews - 4f7b mentioned but not cited (2)

Articles - 4f7b mentioned but not cited (21)

  1. The structural basis for CD36 binding by the malaria parasite. Hsieh FL, Turner L, Bolla JR, Robinson CV, Lavstsen T, Higgins MK. Nat Commun 7 12837 (2016)
  2. Lysosome sorting of β-glucocerebrosidase by LIMP-2 is targeted by the mannose 6-phosphate receptor. Zhao Y, Ren J, Padilla-Parra S, Fry EE, Stuart DI. Nat Commun 5 4321 (2014)
  3. Receptors for enterovirus 71. Yamayoshi S, Fujii K, Koike S. Emerg Microbes Infect 3 e53 (2014)
  4. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Dang M, Wang X, Wang Q, Wang Y, Lin J, Sun Y, Li X, Zhang L, Lou Z, Wang J, Rao Z. Protein Cell 5 692-703 (2014)
  5. A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, Graf M, Ong H, Ulbrich MH, Masson JF, Benton R. Nat Commun 7 11866 (2016)
  6. Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2. Zunke F, Andresen L, Wesseler S, Groth J, Arnold P, Rothaug M, Mazzulli JR, Krainc D, Blanz J, Saftig P, Schwake M. Proc. Natl. Acad. Sci. U.S.A. 113 3791-3796 (2016)
  7. Flexibility and intrinsic disorder are conserved features of hepatitis C virus E2 glycoprotein. Stejskal L, Lees WD, Moss DS, Palor M, Bingham RJ, Shepherd AJ, Grove J. PLoS Comput Biol 16 e1007710 (2020)
  8. Deciphering the Mechanisms of Improved Immunogenicity of Hypochlorous Acid-Treated Antigens in Anti-Cancer Dendritic Cell-Based Vaccines. Graciotti M, Marino F, Pak H, Baumgaertner P, Thierry AC, Chiffelle J, Perez MAS, Zoete V, Harari A, Bassani-Sternberg M, Kandalaft LE. Vaccines (Basel) 8 E271 (2020)
  9. A Multiscale Study of Phosphorylcholine Driven Cellular Phenotypic Targeting. Acosta-Gutiérrez S, Matias D, Avila-Olias M, Gouveia VM, Scarpa E, Forth J, Contini C, Duro-Castano A, Rizzello L, Battaglia G. ACS Cent Sci 8 891-904 (2022)
  10. A scavenger receptor B (CD36)-like protein is a potential mediator of intestinal heme absorption in the hematophagous ectoparasite Lepeophtheirus salmonis. Heggland EI, Eichner C, Støve SI, Martinez A, Nilsen F, Dondrup M. Sci Rep 9 4218 (2019)
  11. A short amphipathic alpha helix in scavenger receptor BI facilitates bidirectional HDL-cholesterol transport. May SC, Sahoo D. J Biol Chem 298 102333 (2022)
  12. All-Atom Molecular Dynamics Simulations of Polyethylene Glycol (PEG) and LIMP-2 Reveal That PEG Penetrates Deep into the Proposed CD36 Cholesterol-Transport Tunnel. Dalhaimer P, Blankenship KR. ACS Omega 7 15728-15738 (2022)
  13. Arctic introgression and chromatin regulation facilitated rapid Qinghai-Tibet Plateau colonization by an avian predator. Hu L, Long J, Lin Y, Gu Z, Su H, Dong X, Lin Z, Xiao Q, Batbayar N, Bold B, Deutschová L, Ganusevich S, Sokolov V, Sokolov A, Patel HR, Waters PD, Graves JAM, Dixon A, Pan S, Zhan X. Nat Commun 13 6413 (2022)
  14. Building a mechanistic mathematical model of hepatitis C virus entry. Kalemera M, Mincheva D, Grove J, Illingworth CJR. PLoS Comput. Biol. 15 e1006905 (2019)
  15. Cancer immune therapy using engineered ‛tail-flipping' nanoliposomes targeting alternatively activated macrophages. Kuninty PR, Binnemars-Postma K, Jarray A, Pednekar KP, Heinrich MA, Pijffers HJ, Ten Hoopen H, Storm G, van Hoogevest P, den Otter WK, Prakash J. Nat Commun 13 4548 (2022)
  16. Croquemort elicits activation of the immune deficiency pathway in ticks. O'Neal AJ, Singh N, Rolandelli A, Laukaitis HJ, Wang X, Shaw DK, Young BD, Narasimhan S, Dutta S, Snyder GA, Samaddar S, Marnin L, Butler LR, Mendes MT, Cabrera Paz FE, Valencia LM, Sundberg EJ, Fikrig E, Pal U, Weber DJ, Pedra JHF. Proc Natl Acad Sci U S A 120 e2208673120 (2023)
  17. Insight into the mechanism of lipids binding and uptake by CD36 receptor. Tarhda Z, Ibrahimi A. Bioinformation 11 302-306 (2015)
  18. Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export. Heybrock S, Kanerva K, Meng Y, Ing C, Liang A, Xiong ZJ, Weng X, Ah Kim Y, Collins R, Trimble W, Pomès R, Privé GG, Annaert W, Schwake M, Heeren J, Lüllmann-Rauch R, Grinstein S, Ikonen E, Saftig P, Neculai D. Nat Commun 10 3521 (2019)
  19. Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Masomian M, Lalani S, Poh CL. Molecules 26 6576 (2021)
  20. On the design of precision nanomedicines. Tian X, Angioletti-Uberti S, Battaglia G. Sci Adv 6 eaat0919 (2020)
  21. Scavenger receptor B1 facilitates the endocytosis of Escherichia coli via TLR4 signaling in mammary gland infection. Taban Q, Ahmad SM, Mumtaz PT, Bhat B, Haq E, Magray S, Saleem S, Shabir N, Muhee A, Kashoo ZA, Zargar MH, Malik AA, Ganai NA, Shah RA. Cell Commun Signal 21 3 (2023)


Reviews citing this publication (50)

  1. Polyunsaturated fatty acids and their metabolites in brain function and disease. Bazinet RP, Layé S. Nat. Rev. Neurosci. 15 771-785 (2014)
  2. Molecular mechanisms of cellular cholesterol efflux. Phillips MC. J. Biol. Chem. 289 24020-24029 (2014)
  3. Even Cancer Cells Watch Their Cholesterol! Riscal R, Skuli N, Simon MC. Mol Cell 76 220-231 (2019)
  4. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Pepino MY, Kuda O, Samovski D, Abumrad NA. Annu. Rev. Nutr. 34 281-303 (2014)
  5. The critical role of toll-like receptors--From microbial recognition to autoimmunity: A comprehensive review. Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. Autoimmun Rev 15 1-8 (2016)
  6. Protein sorting at the trans-Golgi network. Guo Y, Sirkis DW, Schekman R. Annu. Rev. Cell Dev. Biol. 30 169-206 (2014)
  7. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Hersoug LG, Møller P, Loft S. Obes Rev 17 297-312 (2016)
  8. Scavenger receptor class B type I (SR-BI): a versatile receptor with multiple functions and actions. Shen WJ, Hu J, Hu Z, Kraemer FB, Azhar S. Metab. Clin. Exp. 63 875-886 (2014)
  9. CD81 and hepatitis C virus (HCV) infection. Fénéant L, Levy S, Cocquerel L. Viruses 6 535-572 (2014)
  10. CD36 actions in the heart: Lipids, calcium, inflammation, repair and more? Abumrad NA, Goldberg IJ. Biochim. Biophys. Acta 1861 1442-1449 (2016)
  11. Parkinson's disease: acid-glucocerebrosidase activity and alpha-synuclein clearance. Blanz J, Saftig P. J. Neurochem. 139 Suppl 1 198-215 (2016)
  12. Carotenoid metabolism at the intestinal barrier. von Lintig J, Moon J, Lee J, Ramkumar S. Biochim Biophys Acta Mol Cell Biol Lipids 1865 158580 (2020)
  13. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Chen CT, Bazinet RP. Prostaglandins Leukot. Essent. Fatty Acids 92 33-40 (2015)
  14. CD36 and malaria: friends or foes? A decade of data provides some answers. Cabrera A, Neculai D, Kain KC. Trends Parasitol. 30 436-444 (2014)
  15. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Widjaja-Adhi MAK, Golczak M. Biochim Biophys Acta Mol Cell Biol Lipids 1865 158571 (2020)
  16. SR-BI: A Multifunctional Receptor in Cholesterol Homeostasis and Atherosclerosis. Linton MF, Tao H, Linton EF, Yancey PG. Trends Endocrinol. Metab. 28 461-472 (2017)
  17. The role of CD36 in cardiovascular disease. Shu H, Peng Y, Hang W, Nie J, Zhou N, Wang DW. Cardiovasc Res 118 115-129 (2022)
  18. Evaluation of reconstituted high-density lipoprotein (rHDL) as a drug delivery platform - a detailed survey of rHDL particles ranging from biophysical properties to clinical implications. Simonsen JB. Nanomedicine 12 2161-2179 (2016)
  19. Recent progress in molecular genetic studies on the carotenoid transport system using cocoon-color mutants of the silkworm. Tsuchida K, Sakudoh T. Arch. Biochem. Biophys. 572 151-157 (2015)
  20. Intestinal absorption of vitamin D: from the meal to the enterocyte. Reboul E. Food Funct 6 356-362 (2015)
  21. Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. Circ Res 128 433-450 (2021)
  22. The Role of Cholesterol in α-Synuclein and Lewy Body Pathology in GBA1 Parkinson's Disease. García-Sanz P, M F G Aerts J, Moratalla R. Mov Disord 36 1070-1085 (2021)
  23. CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Yang X, Okamura DM, Lu X, Chen Y, Moorhead J, Varghese Z, Ruan XZ. Nat Rev Nephrol 13 769-781 (2017)
  24. Hepatitis C Virus Structure: Defined by What It Is Not. Dearborn AD, Marcotrigiano J. Cold Spring Harb Perspect Med 10 a036822 (2020)
  25. SR-B1: A Unique Multifunctional Receptor for Cholesterol Influx and Efflux. Shen WJ, Azhar S, Kraemer FB. Annu. Rev. Physiol. 80 95-116 (2018)
  26. CD36 signaling in vascular redox stress. Yang M, Silverstein RL. Free Radic Biol Med 136 159-171 (2019)
  27. Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. Glatz JFC, Luiken JJFP. J. Lipid Res. 59 1084-1093 (2018)
  28. Intestinal CD36 and Other Key Proteins of Lipid Utilization: Role in Absorption and Gut Homeostasis. Cifarelli V, Abumrad NA. Compr Physiol 8 493-507 (2018)
  29. SR-B1 and PDZK1: partners in HDL regulation. Trigatti BL. Curr. Opin. Lipidol. 28 201-208 (2017)
  30. SR-B1, a Key Receptor Involved in the Progression of Cardiovascular Disease: A Perspective from Mice and Human Genetic Studies. Gracia-Rubio I, Martín C, Civeira F, Cenarro A. Biomedicines 9 612 (2021)
  31. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. Shen WJ, Asthana S, Kraemer FB, Azhar S. J. Lipid Res. 59 1114-1131 (2018)
  32. Targeting CD36 as Biomarker for Metastasis Prognostic: How Far from Translation into Clinical Practice? Enciu AM, Radu E, Popescu ID, Hinescu ME, Ceafalan LC. Biomed Res Int 2018 7801202 (2018)
  33. What does procollagen C-endopeptidase enhancer protein 2 have to do with HDL-cholesteryl ester uptake? Or how I learned to stop worrying and love reverse cholesterol transport? Sorci-Thomas MG, Pollard RD, Thomas MJ. Curr. Opin. Lipidol. 26 420-425 (2015)
  34. CD36 Signaling in Diabetic Cardiomyopathy. Zhang X, Fan J, Li H, Chen C, Wang Y. Aging Dis 12 826-840 (2021)
  35. Good Cholesterol Gone Bad? HDL and COVID-19. Kluck GEG, Yoo JA, Sakarya EH, Trigatti BL. Int J Mol Sci 22 10182 (2021)
  36. CD36 Signal Transduction in Metabolic Diseases: Novel Insights and Therapeutic Targeting. Karunakaran U, Elumalai S, Moon JS, Won KC. Cells 10 1833 (2021)
  37. Cell biology in China: Focusing on the lysosome. Yang C, Wang X. Traffic 18 348-357 (2017)
  38. Lipoprotein receptor signalling in atherosclerosis. Mineo C. Cardiovasc Res 116 1254-1274 (2020)
  39. Molecular components affecting ocular carotenoid and retinoid homeostasis. von Lintig J, Moon J, Babino D. Prog Retin Eye Res 80 100864 (2021)
  40. Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity-Receptors and Signalling Mechanisms. Berger M, Naseem KM. Int J Mol Sci 23 9199 (2022)
  41. CD36-Fatty Acid-Mediated Metastasis via the Bidirectional Interactions of Cancer Cells and Macrophages. Zaidi NE, Shazali NAH, Leow TC, Osman MA, Ibrahim K, Cheng WH, Lai KS, Nik Abd Rahman NMA. Cells 11 3556 (2022)
  42. Cellular receptors for enterovirus A71. Kobayashi K, Koike S. J. Biomed. Sci. 27 23 (2020)
  43. Cholesterol metabolism and tumor. Meng Y, Wang Q, Lyu Z. Zhejiang Da Xue Xue Bao Yi Xue Ban 50 23-31 (2021)
  44. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Front Pharmacol 14 1283784 (2023)
  45. Novel Functions of Endothelial Scavenger Receptor Class B Type I. Yu L, Dai Y, Mineo C. Curr Atheroscler Rep 23 6 (2021)
  46. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Juhl AD, Wüstner D. Front Cell Dev Biol 10 834408 (2022)
  47. Role of CD36 in central nervous system diseases. Feng M, Zhou Q, Xie H, Liu C, Zheng M, Zhang S, Zhou S, Zhao J. Neural Regen Res 19 512-518 (2024)
  48. The Consequences of GBA Deficiency in the Autophagy-Lysosome System in Parkinson's Disease Associated with GBA. Pradas E, Martinez-Vicente M. Cells 12 191 (2023)
  49. The Multifunctionality of CD36 in Diabetes Mellitus and Its Complications-Update in Pathogenesis, Treatment and Monitoring. Puchałowicz K, Rać ME. Cells 9 (2020)
  50. The cell biology of the hepatocyte: A membrane trafficking machine. Schulze RJ, Schott MB, Casey CA, Tuma PL, McNiven MA. J. Cell Biol. 218 2096-2112 (2019)

Articles citing this publication (83)

  1. A prenylated dsRNA sensor protects against severe COVID-19. Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, Loney C, Herder V, Allan J, Jarmson I, Cameron-Ruiz N, Varjak M, Pinto RM, Lee JY, Iselin L, Palmalux N, Stewart DG, Swingler S, Greenwood EJD, Crozier TWM, Gu Q, Davies EL, Clohisey S, Wang B, Trindade Maranhão Costa F, Freire Santana M, de Lima Ferreira LC, Murphy L, Fawkes A, Meynert A, Grimes G, ISARIC4C Investigators, Da Silva Filho JL, Marti M, Hughes J, Stanton RJ, Wang ECY, Ho A, Davis I, Jarrett RF, Castello A, Robertson DL, Semple MG, Openshaw PJM, Palmarini M, Lehner PJ, Baillie JK, Rihn SJ, Wilson SJ. Science 374 eabj3624 (2021)
  2. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Rothaug M, Zunke F, Mazzulli JR, Schweizer M, Altmeppen H, Lüllmann-Rauch R, Kallemeijn WW, Gaspar P, Aerts JM, Glatzel M, Saftig P, Krainc D, Schwake M, Blanz J. Proc. Natl. Acad. Sci. U.S.A. 111 15573-15578 (2014)
  3. Cyclophilin A associates with enterovirus-71 virus capsid and plays an essential role in viral infection as an uncoating regulator. Qing J, Wang Y, Sun Y, Huang J, Yan W, Wang J, Su D, Ni C, Li J, Rao Z, Liu L, Lou Z. PLoS Pathog. 10 e1004422 (2014)
  4. A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease. PrabhuDas MR, Baldwin CL, Bollyky PL, Bowdish DME, Drickamer K, Febbraio M, Herz J, Kobzik L, Krieger M, Loike J, McVicker B, Means TK, Moestrup SK, Post SR, Sawamura T, Silverstein S, Speth RC, Telfer JC, Thiele GM, Wang XY, Wright SD, El Khoury J. J. Immunol. 198 3775-3789 (2017)
  5. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Armstrong SM, Sugiyama MG, Fung KY, Gao Y, Wang C, Levy AS, Azizi P, Roufaiel M, Zhu SN, Neculai D, Yin C, Bolz SS, Seidah NG, Cybulsky MI, Heit B, Lee WL. Cardiovasc. Res. 108 268-277 (2015)
  6. Nanoparticle Targeting and Cholesterol Flux Through Scavenger Receptor Type B-1 Inhibits Cellular Exosome Uptake. Plebanek MP, Mutharasan RK, Volpert O, Matov A, Gatlin JC, Thaxton CS. Sci Rep 5 15724 (2015)
  7. SR-BI/CD36 chimeric receptors define extracellular subdomains of SR-BI critical for cholesterol transport. Kartz GA, Holme RL, Nicholson K, Sahoo D. Biochemistry 53 6173-6182 (2014)
  8. Estrogens prevent metabolic dysfunctions induced by circadian disruptions in female mice. Zhu L, Zou F, Yang Y, Xu P, Saito K, Othrell Hinton A, Yan X, Ding H, Wu Q, Fukuda M, Sun Z, Tong Q, Xu Y. Endocrinology 156 2114-2123 (2015)
  9. CD36 binds oxidized low density lipoprotein (LDL) in a mechanism dependent upon fatty acid binding. Jay AG, Chen AN, Paz MA, Hung JP, Hamilton JA. J. Biol. Chem. 290 4590-4603 (2015)
  10. Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular β-glucosidases. Marques AR, Mirzaian M, Akiyama H, Wisse P, Ferraz MJ, Gaspar P, Ghauharali-van der Vlugt K, Meijer R, Giraldo P, Alfonso P, Irún P, Dahl M, Karlsson S, Pavlova EV, Cox TM, Scheij S, Verhoek M, Ottenhoff R, van Roomen CP, Pannu NS, van Eijk M, Dekker N, Boot RG, Overkleeft HS, Blommaart E, Hirabayashi Y, Aerts JM. J. Lipid Res. 57 451-463 (2016)
  11. Mannose 6-phosphate-independent Lysosomal Sorting of LIMP-2. Blanz J, Zunke F, Markmann S, Damme M, Braulke T, Saftig P, Schwake M. Traffic 16 1127-1136 (2015)
  12. Plasmodium P36 determines host cell receptor usage during sporozoite invasion. Manzoni G, Marinach C, Topçu S, Briquet S, Grand M, Tolle M, Gransagne M, Lescar J, Andolina C, Franetich JF, Zeisel MB, Huby T, Rubinstein E, Snounou G, Mazier D, Nosten F, Baumert TF, Silvie O. Elife 6 (2017)
  13. SR-B1 Is a Silica Receptor that Mediates Canonical Inflammasome Activation. Tsugita M, Morimoto N, Tashiro M, Kinoshita K, Nakayama M. Cell Rep 18 1298-1311 (2017)
  14. Scavenger receptor B protects shrimp from bacteria by enhancing phagocytosis and regulating expression of antimicrobial peptides. Bi WJ, Li DX, Xu YH, Xu S, Li J, Zhao XF, Wang JX. Dev. Comp. Immunol. 51 10-21 (2015)
  15. High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. Toomey MB, Lopes RJ, Araújo PM, Johnson JD, Gazda MA, Afonso S, Mota PG, Koch RE, Hill GE, Corbo JC, Carneiro M. Proc. Natl. Acad. Sci. U.S.A. 114 5219-5224 (2017)
  16. Expression, purification and reconstitution of the C-terminal transmembrane domain of scavenger receptor BI into detergent micelles for NMR analysis. Chadwick AC, Jensen DR, Peterson FC, Volkman BF, Sahoo D. Protein Expr. Purif. 107 35-42 (2015)
  17. Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins. Thomas SE, Harrison EH. J. Lipid Res. 57 1865-1878 (2016)
  18. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops. Goncalves A, Gontero B, Nowicki M, Margier M, Masset G, Amiot MJ, Reboul E. J. Lipid Res. 56 1123-1133 (2015)
  19. SR-BI Mediated Transcytosis of HDL in Brain Microvascular Endothelial Cells Is Independent of Caveolin, Clathrin, and PDZK1. Fung KY, Wang C, Nyegaard S, Heit B, Fairn GD, Lee WL. Front Physiol 8 841 (2017)
  20. Early Development of Definitive Erythroblasts from Human Pluripotent Stem Cells Defined by Expression of Glycophorin A/CD235a, CD34, and CD36. Mao B, Huang S, Lu X, Sun W, Zhou Y, Pan X, Yu J, Lai M, Chen B, Zhou Q, Mao S, Bian G, Zhou J, Nakahata T, Ma F. Stem Cell Reports 7 869-883 (2016)
  21. Human variant of scavenger receptor BI (R174C) exhibits impaired cholesterol transport functions. May SC, Dron JS, Hegele RA, Sahoo D. J Lipid Res 62 100045 (2021)
  22. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice. Kook S, Wang P, Young LR, Schwake M, Saftig P, Weng X, Meng Y, Neculai D, Marks MS, Gonzales L, Beers MF, Guttentag S. J. Biol. Chem. 291 8414-8427 (2016)
  23. The lysosomal membrane protein SCAV-3 maintains lysosome integrity and adult longevity. Li Y, Chen B, Zou W, Wang X, Wu Y, Zhao D, Sun Y, Liu Y, Chen L, Miao L, Yang C, Wang X. J. Cell Biol. 215 167-185 (2016)
  24. Tryptophan 415 Is Critical for the Cholesterol Transport Functions of Scavenger Receptor BI. Holme RL, Miller JJ, Nicholson K, Sahoo D. Biochemistry 55 103-113 (2016)
  25. HDL particles incorporate into lipid bilayers - a combined AFM and single molecule fluorescence microscopy study. Plochberger B, Röhrl C, Preiner J, Rankl C, Brameshuber M, Madl J, Bittman R, Ros R, Sezgin E, Eggeling C, Hinterdorfer P, Stangl H, Schütz GJ. Sci Rep 7 15886 (2017)
  26. Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufs-disease. Peters J, Rittger A, Weisner R, Knabbe J, Zunke F, Rothaug M, Damme M, Berkovic SF, Blanz J, Saftig P, Schwake M. Biochem. Biophys. Res. Commun. 457 334-340 (2015)
  27. N-Acetylcysteine Restores Sevoflurane Postconditioning Cardioprotection against Myocardial Ischemia-Reperfusion Injury in Diabetic Rats. Lin J, Wang T, Li Y, Wang M, Li H, Irwin MG, Xia Z. J Diabetes Res 2016 9213034 (2016)
  28. Aster Proteins Facilitate Nonvesicular Plasma Membrane to ER Cholesterol Transport in Mammalian Cells. Sandhu J, Li S, Fairall L, Pfisterer SG, Gurnett JE, Xiao X, Weston TA, Vashi D, Ferrari A, Orozco JL, Hartman CL, Strugatsky D, Lee SD, He C, Hong C, Jiang H, Bentolila LA, Gatta AT, Levine TP, Ferng A, Lee R, Ford DA, Young SG, Ikonen E, Schwabe JWR, Tontonoz P. Cell 175 514-529.e20 (2018)
  29. Fatty acid mobilization from adipose tissue is mediated by CD36 posttranslational modifications and intracellular trafficking. Daquinag AC, Gao Z, Fussell C, Immaraj L, Pasqualini R, Arap W, Akimzhanov AM, Febbraio M, Kolonin MG. JCI Insight 6 147057 (2021)
  30. Plasmodium falciparum-CD36 Structure-Function Relationships Defined by Ortholog Scanning Mutagenesis. Cabrera A, Neculai D, Tran V, Lavstsen T, Turner L, Kain KC. J Infect Dis 219 945-954 (2019)
  31. Quantitative, Label-Free Proteomics in the Symptomatic Niemann-Pick, Type C1 Mouse Model Using Standard Flow Liquid Chromatography and Thermal Focusing Electrospray Ionization. Pergande MR, Nguyen TTA, Haney-Ball C, Davidson CD, Cologna SM. Proteomics 19 e1800432 (2019)
  32. Structural Basis for Lipid Binding and Function by an Evolutionarily Conserved Protein, Serum Amyloid A. Frame NM, Kumanan M, Wales TE, Bandara A, Fändrich M, Straub JE, Engen JR, Gursky O. J Mol Biol 432 1978-1995 (2020)
  33. Benzo-fused lactams from a diversity-oriented synthesis (DOS) library as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Dockendorff C, Faloon PW, Pu J, Yu M, Johnston S, Bennion M, Penman M, Nieland TJ, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. Bioorg. Med. Chem. Lett. 25 2100-2105 (2015)
  34. Cooperative effect of the VP1 amino acids 98E, 145A and 169F in the productive infection of mouse cell lines by enterovirus 71 (BS strain). Victorio CB, Xu Y, Ng Q, Meng T, Chow VT, Chua KB. Emerg Microbes Infect 5 e60 (2016)
  35. Discovery of bisamide-heterocycles as inhibitors of scavenger receptor BI (SR-BI)-mediated lipid uptake. Dockendorff C, Faloon PW, Germain A, Yu M, Youngsaye W, Nag PP, Bennion M, Penman M, Nieland TJ, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. Bioorg. Med. Chem. Lett. 25 2594-2598 (2015)
  36. Indolinyl-Thiazole Based Inhibitors of Scavenger Receptor-BI (SR-BI)-Mediated Lipid Transport. Dockendorff C, Faloon PW, Yu M, Youngsaye W, Penman M, Nieland TJ, Nag PP, Lewis TA, Pu J, Bennion M, Negri J, Paterson C, Lam G, Dandapani S, Perez JR, Munoz B, Palmer MA, Schreiber SL, Krieger M. ACS Med Chem Lett 6 375-380 (2015)
  37. Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Conrad KS, Cheng TW, Ysselstein D, Heybrock S, Hoth LR, Chrunyk BA, Am Ende CW, Krainc D, Schwake M, Saftig P, Liu S, Qiu X, Ehlers MD. Nat Commun 8 1908 (2017)
  38. Role of LIMP-2 in the intracellular trafficking of β-glucosidase in different human cellular models. Malini E, Zampieri S, Deganuto M, Romanello M, Sechi A, Bembi B, Dardis A. FASEB J. 29 3839-3852 (2015)
  39. Scavenger Receptor Class B, Type I, a CD36 Related Protein in Macrobrachium nipponense: Characterization, RNA Interference, and Expression Analysis with Different Dietary Lipid Sources. Ding Z, Luo N, Kong Y, Li J, Zhang Y, Cao F, Ye J. Int J Genomics 2016 6325927 (2016)
  40. Serum amyloid A self-assembles with phospholipids to form stable protein-rich nanoparticles with a distinct structure: A hypothetical function of SAA as a "molecular mop" in immune response. Frame NM, Jayaraman S, Gantz DL, Gursky O. J. Struct. Biol. 200 293-302 (2017)
  41. HDL protects against doxorubicin-induced cardiotoxicity in a scavenger receptor class B type 1-, PI3K-, and Akt-dependent manner. Durham KK, Chathely KM, Mak KC, Momen A, Thomas CT, Zhao YY, MacDonald ME, Curtis JM, Husain M, Trigatti BL. Am. J. Physiol. Heart Circ. Physiol. 314 H31-H44 (2018)
  42. Leishmania amazonensis Engages CD36 to Drive Parasitophorous Vacuole Maturation. Okuda K, Tong M, Dempsey B, Moore KJ, Gazzinelli RT, Silverman N. PLoS Pathog. 12 e1005669 (2016)
  43. Neuronal growth regulator 1 promotes adipocyte lipid trafficking via interaction with CD36. Yoo A, Joo Y, Cheon Y, Lee SJ, Lee S. J Lipid Res 63 100221 (2022)
  44. Regulation of Insulin Receptor Pathway and Glucose Metabolism by CD36 Signaling. Samovski D, Dhule P, Pietka T, Jacome-Sosa M, Penrose E, Son NH, Flynn CR, Shoghi KI, Hyrc KL, Goldberg IJ, Gamazon ER, Abumrad NA. Diabetes 67 1272-1284 (2018)
  45. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Huang L, Chambliss KL, Gao X, Yuhanna IS, Behling-Kelly E, Bergaya S, Ahmed M, Michaely P, Luby-Phelps K, Darehshouri A, Xu L, Fisher EA, Ge WP, Mineo C, Shaul PW. Nature 569 565-569 (2019)
  46. The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection. Zhang X, Yang P, Wang N, Zhang J, Li J, Guo H, Yin X, Rao Z, Wang X, Zhang L. Protein Cell 8 590-600 (2017)
  47. The cellular receptor for enterovirus 71. Liu Y, Rossmann MG. Protein Cell 5 655-657 (2014)
  48. Zebrafish scarb2a insertional mutant reveals a novel function for the Scarb2/Limp2 receptor in notochord development. Diaz-Tellez A, Zampedri C, Ramos-Balderas JL, García-Hernández F, Maldonado E. Dev. Dyn. 245 508-519 (2016)
  49. Antennal Proteome of the Solenopsis invicta (Hymenoptera: Formicidae): Caste Differences in Olfactory Receptors and Chemosensory Support Proteins. Shah JS, Renthal R. J Insect Sci 20 29 (2020)
  50. CD36 mediates albumin transcytosis by dermal but not lung microvascular endothelial cells: role in fatty acid delivery. Raheel H, Ghaffari S, Khosraviani N, Mintsopoulos V, Auyeung D, Wang C, Kim YH, Mullen B, Sung HK, Ho M, Fairn G, Neculai D, Febbraio M, Heit B, Lee WL. Am J Physiol Lung Cell Mol Physiol 316 L740-L750 (2019)
  51. Cholesterol sensing by CD81 is important for hepatitis C virus entry. Palor M, Stejskal L, Mandal P, Lenman A, Alberione MP, Kirui J, Moeller R, Ebner S, Meissner F, Gerold G, Shepherd AJ, Grove J. J Biol Chem 295 16931-16948 (2020)
  52. Differential roles of Scavenger receptor class B type I: A protective molecule and a facilitator of atherosclerosis (Review). Ma B, Jia J, Wang X, Zhang R, Niu S, Ni L, Di X, Liu C. Mol Med Rep 22 2599-2604 (2020)
  53. Identification of Inhibitors of CD36-Amyloid Beta Binding as Potential Agents for Alzheimer's Disease. Doens D, Valiente PA, Mfuh AM, X T Vo A, Tristan A, Carreño L, Quijada M, Nguyen VT, Perry G, Larionov OV, Lleonart R, Fernández PL. ACS Chem Neurosci 8 1232-1241 (2017)
  54. Lysosome-targeted multifunctional lipid probes reveal the sterol transporter NPC1 as a sphingosine interactor. Altuzar J, Notbohm J, Stein F, Haberkant P, Hempelmann P, Heybrock S, Worsch J, Saftig P, Höglinger D. Proc Natl Acad Sci U S A 120 e2213886120 (2023)
  55. Mipu1 overexpression protects macrophages from oxLDL-induced foam cell formation and cell apoptosis. Qu SL, Fan WJ, Zhang C, Guo F, Han D, Pan WJ, Li W, Feng DM, Jiang ZS. DNA Cell Biol. 33 839-846 (2014)
  56. NMR Structure of the C-Terminal Transmembrane Domain of the HDL Receptor, SR-BI, and a Functionally Relevant Leucine Zipper Motif. Chadwick AC, Jensen DR, Hanson PJ, Lange PT, Proudfoot SC, Peterson FC, Volkman BF, Sahoo D. Structure 25 446-457 (2017)
  57. Scavenger receptor C promotes bacterial clearance in kuruma shrimp Marsupenaeus japonicus by enhancing hemocyte phagocytosis and AMP expression. Yang MC, Yang HT, Li J, Sun JJ, Bi WJ, Niu GJ, Zhang Q, Shi XZ, Zhao XF, Wang JX. Fish Shellfish Immunol. 67 254-262 (2017)
  58. The computational analyses, molecular dynamics of fatty-acid transport mechanism to the CD36 receptor. Akachar J, Etchebest C, El Jaoudi R, Ibrahimi A. Sci Rep 11 23207 (2021)
  59. α-Tocopheryl Phosphate Induces VEGF Expression via CD36/PI3Kγ in THP-1 Monocytes. Zingg JM, Azzi A, Meydani M. J. Cell. Biochem. 118 1855-1867 (2017)
  60. CD36-Binding Amphiphilic Nanoparticles for Attenuation of Alpha Synuclein-Induced Microglial Activation. Zhao N, Francis NL, Song S, Kholodovych V, Calvelli HR, Hoop CL, Pang ZP, Baum J, Uhrich KE, Moghe PV. Adv Nanobiomed Res 2 2100120 (2022)
  61. Deciphering the Molecular Mechanism Underlying African Animal Trypanosomiasis by Means of the 1000 Bull Genomes Project Genomic Dataset. Rajavel A, Klees S, Hui Y, Schmitt AO, Gültas M. Biology (Basel) 11 742 (2022)
  62. Development and validation of a purification system for functional full-length human SR-B1 and CD36. Powers HR, Jenjak SE, Volkman BF, Sahoo D. J Biol Chem 299 105187 (2023)
  63. Expression and biochemical analyses of proteins involved in the transport of carotenoids and retinoids. Golczak M, Moise AR, von Lintig J. Methods Enzymol 674 447-480 (2022)
  64. FA Sliding as the Mechanism for the ANT1-Mediated Fatty Acid Anion Transport in Lipid Bilayers. Kreiter J, Škulj S, Brkljača Z, Bardakji S, Vazdar M, Pohl EE. Int J Mol Sci 24 13701 (2023)
  65. Fatty-acid receptor CD36 functions as a hydrogen sulfide-targeted receptor with its Cys333-Cys272 disulfide bond serving as a specific molecular switch to accelerate gastric cancer metastasis. Wang R, Tao B, Fan Q, Wang S, Chen L, Zhang J, Hao Y, Dong S, Wang Z, Wang W, Cai Y, Li X, Bao T, Wang X, Qiu X, Wang K, Mo X, Kang Y, Wang Z. EBioMedicine 45 108-123 (2019)
  66. Functions of the Dictyostelium LIMP-2 and CD36 homologues in bacteria uptake, phagolysosome biogenesis and host cell defence. Sattler N, Bosmani C, Barisch C, Guého A, Gopaldass N, Dias M, Leuba F, Bruckert F, Cosson P, Soldati T. J. Cell. Sci. 131 (2018)
  67. Identification of a Novel Homozygous Splice-Site Mutation in SCARB2 that Causes Progressive Myoclonus Epilepsy with or without Renal Failure. He J, Lin H, Li JJ, Su HZ, Wang DN, Lin Y, Wang N, Chen WJ. Chin. Med. J. 131 1575-1583 (2018)
  68. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Pharmaceutics 13 1509 (2021)
  69. Insulin increases cholesterol uptake, lipid droplet content, and apolipoprotein B secretion in CaCo-2 cells by upregulating SR-BI via a PI3K, AKT, and mTOR-dependent pathway. Fuentes M, Santander N, Cortés V. J. Cell. Biochem. (2018)
  70. Internalization and Transport of PEGylated Lipid-Based Mixed Micelles across Caco-2 Cells Mediated by Scavenger Receptor B1. Su X, Ramírez-Escudero M, Sun F, van den Dikkenberg JB, van Steenbergen MJ, Pieters RJ, Janssen BJC, van Hasselt PM, Hennink WE, van Nostrum CF. Pharmaceutics 13 2022 (2021)
  71. Is there a difference between aortic and brachial vein blood lipoprotein and total cholesterol levels? Yuksek U, Cerit L, Yaman B, Usalp S, Ceylan E, Edebal OH, Akpinar O, Duygu H. Rev Assoc Med Bras (1992) 69 e20221424 (2023)
  72. Lipid Uptake by Alveolar Macrophages Drives Fibrotic Responses to Silica Dust. Hou X, Summer R, Chen Z, Tian Y, Ma J, Cui J, Hao X, Guo L, Xu H, Wang H, Liu H. Sci Rep 9 399 (2019)
  73. Lipid oversupply induces CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1: an early event prior to insulin resistance. Zhu B, Li MY, Lin Q, Liang Z, Xin Q, Wang M, He Z, Wang X, Wu X, Chen GG, Tong PC, Zhang W, Liu LZ. Theranostics 10 1332-1354 (2020)
  74. Mechanism for the selective uptake of macular carotenoids mediated by the HDL cholesterol receptor SR-BI. Li B, George EW, Vachali P, Chang FY, Gorusupudi A, Arunkumar R, Giauque NA, Wan Z, Frederick JM, Bernstein PS. Exp Eye Res 229 109429 (2023)
  75. Molecular determinants of SR-B1-dependent Plasmodium sporozoite entry into hepatocytes. Langlois AC, Manzoni G, Vincensini L, Coppée R, Marinach C, Guérin M, Huby T, Carrière V, Cosset FL, Dreux M, Rubinstein E, Silvie O. Sci Rep 10 13509 (2020)
  76. Obesity and inflammation influence pharmacokinetic profiles of PEG-based nanoparticles. Raith M, Nguyen N, Kauffman SJ, Kang N, Mays J, Dalhaimer P. J Control Release 355 434-445 (2023)
  77. Pleiotropic Roles of Scavenger Receptors in Circadian Retinal Phagocytosis: A New Function for Lysosomal SR-B2/LIMP-2 at the RPE Cell Surface. Rieu Q, Bougoüin A, Zagar Y, Chatagnon J, Hamieh A, Enderlin J, Huby T, Nandrot EF. Int J Mol Sci 23 3445 (2022)
  78. Proline residues in scavenger receptor-BI's C-terminal region support efficient cholesterol transport. Proudfoot SC, Sahoo D. Biochem. J. 476 951-963 (2019)
  79. Scavenger receptor class B, type 1 facilitates cellular fatty acid uptake. Wang W, Yan Z, Hu J, Shen WJ, Azhar S, Kraemer FB. Biochim Biophys Acta Mol Cell Biol Lipids 1865 158554 (2020)
  80. Structures of the cGMP-dependent protein kinase in malaria parasites reveal a unique structural relay mechanism for activation. El Bakkouri M, Kouidmi I, Wernimont AK, Amani M, Hutchinson A, Loppnau P, Kim JJ, Flueck C, Walker JR, Seitova A, Senisterra G, Kakihara Y, Kim C, Blackman MJ, Calmettes C, Baker DA, Hui R. Proc. Natl. Acad. Sci. U.S.A. 116 14164-14173 (2019)
  81. The Role of CD36 in Type 2 Diabetes Mellitus: β-Cell Dysfunction and Beyond. Moon JS, Karunakaran U, Suma E, Chung SM, Won KC. Diabetes Metab J 44 222-233 (2020)
  82. The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in obese mice. Cao X, Nguyen V, Tsai J, Gao C, Tian Y, Zhang Y, Carver W, Kiaris H, Cui T, Tan W. Mol Metab 74 101756 (2023)
  83. Letter The importance of cholesterol in Parkinson's disease. García-Sanz P, Moratalla R. Mov. Disord. 33 343-344 (2018)