4f9e Citations

Cyclic di-GMP sensing via the innate immune signaling protein STING.

Mol Cell 46 735-45 (2012)
Cited: 157 times
EuropePMC logo PMID: 22705373

Abstract

Detection of foreign materials is the first step of successful immune responses. Stimulator of interferon genes (STING) was shown to directly bind cyclic diguanylate monophosphate (c-di-GMP), a bacterial second messenger, and to elicit strong interferon responses. Here we elucidate the structural features of the cytosolic c-di-GMP binding domain (CBD) of STING and its complex with c-di-GMP. The CBD exhibits an α + β fold and is a dimer in the crystal and in solution. Surprisingly, one c-di-GMP molecule binds to the central crevice of a STING dimer, using a series of stacking and hydrogen bonding interactions. We show that STING is autoinhibited by an intramolecular interaction between the CBD and the C-terminal tail (CTT) and that c-di-GMP releases STING from this autoinhibition by displacing the CTT. The structures provide a remarkable example of pathogen-host interactions in which a unique microbial molecule directly engages the innate immune system.

Reviews - 4f9e mentioned but not cited (3)

  1. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Garland KM, Sheehy TL, Wilson JT. Chem Rev 122 5977-6039 (2022)
  2. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. Sintim HO, Mikek CG, Wang M, Sooreshjani MA. Medchemcomm 10 1999-2023 (2019)
  3. Dysregulation of the cGAS-STING Pathway in Monogenic Autoinflammation and Lupus. Wobma H, Shin DS, Chou J, Dedeoğlu F. Front Immunol 13 905109 (2022)

Articles - 4f9e mentioned but not cited (6)

  1. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, Chen ZJ. Mol Cell 51 226-235 (2013)
  2. Cyclic di-GMP sensing via the innate immune signaling protein STING. Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D, Eck MJ, Chen ZJ, Wu H. Mol Cell 46 735-745 (2012)
  3. Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2',3' cGAMP Signaling. Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE. Mol Cell 59 891-903 (2015)
  4. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. Yi G, Brendel VP, Shu C, Li P, Palanathan S, Cheng Kao C. PLoS One 8 e77846 (2013)
  5. Dynamic Structural Differences between Human and Mouse STING Lead to Differing Sensitivity to DMXAA. Shih AY, Damm-Ganamet KL, Mirzadegan T. Biophys J 114 32-39 (2018)
  6. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Shi H, Wu J, Chen ZJ, Chen C. Proc Natl Acad Sci U S A 112 8947-8952 (2015)


Reviews citing this publication (63)

  1. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Römling U, Galperin MY, Gomelsky M. Microbiol Mol Biol Rev 77 1-52 (2013)
  2. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Chen Q, Sun L, Chen ZJ. Nat Immunol 17 1142-1149 (2016)
  3. Innate immune pattern recognition: a cell biological perspective. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Annu Rev Immunol 33 257-290 (2015)
  4. Innate immune sensing and signaling of cytosolic nucleic acids. Wu J, Chen ZJ. Annu Rev Immunol 32 461-488 (2014)
  5. Cytosolic sensing of viruses. Goubau D, Deddouche S, Reis e Sousa C. Immunity 38 855-869 (2013)
  6. Immune sensing of DNA. Paludan SR, Bowie AG. Immunity 38 870-880 (2013)
  7. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Cai X, Chiu YH, Chen ZJ. Mol Cell 54 289-296 (2014)
  8. Molecular mechanisms and cellular functions of cGAS-STING signalling. Hopfner KP, Hornung V. Nat Rev Mol Cell Biol 21 501-521 (2020)
  9. STING and the innate immune response to nucleic acids in the cytosol. Burdette DL, Vance RE. Nat Immunol 14 19-26 (2013)
  10. Newly described pattern recognition receptors team up against intracellular pathogens. Broz P, Monack DM. Nat Rev Immunol 13 551-565 (2013)
  11. Cyclic di-AMP: another second messenger enters the fray. Corrigan RM, Gründling A. Nat Rev Microbiol 11 513-524 (2013)
  12. STING-dependent cytosolic DNA sensing pathways. Barber GN. Trends Immunol 35 88-93 (2014)
  13. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Tan X, Sun L, Chen J, Chen ZJ. Annu Rev Microbiol 72 447-478 (2018)
  14. Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways. Zevini A, Olagnier D, Hiscott J. Trends Immunol 38 194-205 (2017)
  15. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Hornung V, Hartmann R, Ablasser A, Hopfner KP. Nat Rev Immunol 14 521-528 (2014)
  16. The interferon response to intracellular DNA: why so many receptors? Unterholzner L. Immunobiology 218 1312-1321 (2013)
  17. Innate immune detection of microbial nucleic acids. Gürtler C, Bowie AG. Trends Microbiol 21 413-420 (2013)
  18. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms. Chou SH, Galperin MY. J Bacteriol 198 32-46 (2016)
  19. Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Kato K, Omura H, Ishitani R, Nureki O. Annu Rev Biochem 86 541-566 (2017)
  20. Evolutionary Origins of cGAS-STING Signaling. Margolis SR, Wilson SC, Vance RE. Trends Immunol 38 733-743 (2017)
  21. The cGAS-STING pathway for DNA sensing. Xiao TS, Fitzgerald KA. Mol Cell 51 135-139 (2013)
  22. Autophagy and Macrophage Functions: Inflammatory Response and Phagocytosis. Wu MY, Lu JH. Cells 9 E70 (2019)
  23. Molecular basis of DNA recognition in the immune system. Atianand MK, Fitzgerald KA. J Immunol 190 1911-1918 (2013)
  24. Structural biology of innate immunity. Yin Q, Fu TM, Li J, Wu H. Annu Rev Immunol 33 393-416 (2015)
  25. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. Tao J, Zhou X, Jiang Z. IUBMB Life 68 858-870 (2016)
  26. Versatile modes of cellular regulation via cyclic dinucleotides. Krasteva PV, Sondermann H. Nat Chem Biol 13 350-359 (2017)
  27. TMEM173 variants and potential importance to human biology and disease. Patel S, Jin L. Genes Immun 20 82-89 (2019)
  28. MITA/STING: a central and multifaceted mediator in innate immune response. Ran Y, Shu HB, Wang YY. Cytokine Growth Factor Rev 25 631-639 (2014)
  29. The mechanism of double-stranded DNA sensing through the cGAS-STING pathway. Shu C, Li X, Li P. Cytokine Growth Factor Rev 25 641-648 (2014)
  30. Regulating STING in health and disease. Li Y, Wilson HL, Kiss-Toth E. J Inflamm (Lond) 14 11 (2017)
  31. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. Finethy R, Coers J. FEMS Microbiol Rev 40 875-893 (2016)
  32. DNA recognition in immunity and disease. Holm CK, Paludan SR, Fitzgerald KA. Curr Opin Immunol 25 13-18 (2013)
  33. The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Oduro PK, Zheng X, Wei J, Yang Y, Wang Y, Zhang H, Liu E, Gao X, Du M, Wang Q. Acta Pharm Sin B 12 50-75 (2022)
  34. STING Signaling in Cancer Cells: Important or Not? Sokolowska O, Nowis D. Arch Immunol Ther Exp (Warsz) 66 125-132 (2018)
  35. cGAS/STING Pathway in Cancer: Jekyll and Hyde Story of Cancer Immune Response. Bose D. Int J Mol Sci 18 E2456 (2017)
  36. Enterococcus infection biology: lessons from invertebrate host models. Yuen GJ, Ausubel FM. J Microbiol 52 200-210 (2014)
  37. Innate immune responses to DNA viruses. Nie Y, Wang YY. Protein Cell 4 1-7 (2013)
  38. Sensing of dangerous DNA. Gasser S, Zhang WYL, Tan NYJ, Tripathi S, Suter MA, Chew ZH, Khatoo M, Ngeow J, Cheung FSG. Mech Ageing Dev 165 33-46 (2017)
  39. The emerging roles of the STING adaptor protein in immunity and diseases. Liu X, Wang C. Immunology 147 285-291 (2016)
  40. Binding of bacterial secondary messenger molecule c di-GMP is a STING operation. Shaw N, Ouyang S, Liu ZJ. Protein Cell 4 117-129 (2013)
  41. Alternative Pre-mRNA Splicing in Mammals and Teleost Fish: A Effective Strategy for the Regulation of Immune Responses Against Pathogen Infection. Chang MX, Zhang J. Int J Mol Sci 18 E1530 (2017)
  42. Cyclic (di)nucleotides: the common language shared by microbe and host. Gao J, Tao J, Liang W, Jiang Z. Curr Opin Microbiol 30 79-87 (2016)
  43. Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Xia S, Chen Z, Shen C, Fu TM. Protein Cell 12 680-694 (2021)
  44. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Signal Transduct Target Ther 7 394 (2022)
  45. The World of Cyclic Dinucleotides in Bacterial Behavior. Aline Dias da P, Nathalia Marins de A, Gabriel Guarany de A, Robson Francisco de S, Cristiane Rodrigues G. Molecules 25 E2462 (2020)
  46. Tracking the homeostasis of second messenger cyclic-di-GMP in bacteria. Petchiappan A, Naik SY, Chatterji D. Biophys Rev 12 719-730 (2020)
  47. STING modulators: Predictive significance in drug discovery. Cui X, Zhang R, Cen S, Zhou J. Eur J Med Chem 182 111591 (2019)
  48. Molecular mechanisms of mitochondrial DNA release and activation of the cGAS-STING pathway. Kim J, Kim HS, Chung JH. Exp Mol Med 55 510-519 (2023)
  49. Intervention of cGAS‒STING signaling in sterile inflammatory diseases. Hong Z, Mei J, Guo H, Zhu J, Wang C. J Mol Cell Biol 14 mjac005 (2022)
  50. Cyclic Dimeric Guanosine Monophosphate: Activation and Inhibition of Innate Immune Response. Cui T, Cang H, Yang B, He ZG. J Innate Immun 11 242-248 (2019)
  51. Regulation and function of the cGAS-MITA/STING axis in health and disease. Zhang ZD, Zhong B. Cell Insight 1 100001 (2022)
  52. Brucella abortus DNA is a major bacterial agonist to activate the host innate immune system. Campos PC, Gomes MT, Guimarães G, Costa Franco MM, Marim FM, Oliveira SC. Microbes Infect 16 979-984 (2014)
  53. Function and regulation of cGAS-STING signaling in infectious diseases. Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Front Immunol 14 1130423 (2023)
  54. Regulation of the Innate Immune Response during the Human Papillomavirus Life Cycle. Moody CA. Viruses 14 1797 (2022)
  55. Activation of STING Based on Its Structural Features. Hussain B, Xie Y, Jabeen U, Lu D, Yang B, Wu C, Shang G. Front Immunol 13 808607 (2022)
  56. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Zool Res 44 183-218 (2023)
  57. cGAMP-activated cGAS-STING signaling: its bacterial origins and evolutionary adaptation by metazoans. Patel DJ, Yu Y, Xie W. Nat Struct Mol Biol 30 245-260 (2023)
  58. HSV Replication: Triggering and Repressing STING Functionality. Krawczyk E, Kangas C, He B. Viruses 15 226 (2023)
  59. [Innate immune DNA sensing pathways]. Abe T. Uirusu 64 83-94 (2014)
  60. Organelle Stress and Crosstalk in Kidney Disease. Hasegawa S, Inagi R. Kidney360 1 1157-1164 (2020)
  61. The Many Ways to Deal with STING. Coderch C, Arranz-Herrero J, Nistal-Villan E, de Pascual-Teresa B, Rius-Rocabert S. Int J Mol Sci 24 9032 (2023)
  62. Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Khan F, Jeong GJ, Tabassum N, Kim YM. Cell Commun Signal 21 259 (2023)
  63. Regulation of cGAS and STING signaling during inflammation and infection. Chauvin SD, Stinson WA, Platt DJ, Poddar S, Miner JJ. J Biol Chem 299 104866 (2023)

Articles citing this publication (85)

  1. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ. Science 339 826-830 (2013)
  2. Cyclic [G(2',5')pA(3',5')p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, Serganov AA, Liu Y, Jones RA, Hartmann G, Tuschl T, Patel DJ. Cell 153 1094-1107 (2013)
  3. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, Hammond MC, Vance RE. Cell Rep 3 1355-1361 (2013)
  4. Structure-function analysis of STING activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA. Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, Gaffney BL, Shuman S, Jones RA, Deng L, Hartmann G, Barchet W, Tuschl T, Patel DJ. Cell 154 748-762 (2013)
  5. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, Zuo X, Kao CC, Herr AB, Li P. Immunity 39 1019-1031 (2013)
  6. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, Iyer SS, Zaver SA, Schenk M, Zeng S, Zhong W, Liu ZJ, Modlin RL, Liu YJ, Cheng G. Nat Immunol 13 1155-1161 (2012)
  7. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Nature 567 389-393 (2019)
  8. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, Rathinam VA, Monks B, Jin T, Xiao TS, Vogel SN, Vance RE, Fitzgerald KA. J Immunol 190 5216-5225 (2013)
  9. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. Protein Cell 5 369-381 (2014)
  10. STING recognition of cytoplasmic DNA instigates cellular defense. Abe T, Harashima A, Xia T, Konno H, Konno K, Morales A, Ahn J, Gutman D, Barber GN. Mol Cell 50 5-15 (2013)
  11. STING directly activates autophagy to tune the innate immune response. Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, Sehgal SA, Wang X, Wang J, Shang Y, Jiang Z, Liu L, Chen Q. Cell Death Differ 26 1735-1749 (2019)
  12. Agonist-Mediated Activation of STING Induces Apoptosis in Malignant B Cells. Tang CH, Zundell JA, Ranatunga S, Lin C, Nefedova Y, Del Valle JR, Hu CC. Cancer Res 76 2137-2152 (2016)
  13. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. Barker JR, Koestler BJ, Carpenter VK, Burdette DL, Waters CM, Vance RE, Valdivia RH. mBio 4 e00018-13 (2013)
  14. The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ. Cell 158 1389-1401 (2014)
  15. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Chandra D, Quispe-Tintaya W, Jahangir A, Asafu-Adjei D, Ramos I, Sintim HO, Zhou J, Hayakawa Y, Karaolis DK, Gravekamp C. Cancer Immunol Res 2 901-910 (2014)
  16. STING cyclic dinucleotide sensing originated in bacteria. Morehouse BR, Govande AA, Millman A, Keszei AFA, Lowey B, Ofir G, Shao S, Sorek R, Kranzusch PJ. Nature 586 429-433 (2020)
  17. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. J Immunol 193 6124-6134 (2014)
  18. Species-specific detection of the antiviral small-molecule compound CMA by STING. Cavlar T, Deimling T, Ablasser A, Hopfner KP, Hornung V. EMBO J 32 1440-1450 (2013)
  19. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Wu X, Wu FH, Wang X, Wang L, Siedow JN, Zhang W, Pei ZM. Nucleic Acids Res 42 8243-8257 (2014)
  20. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Hansen AL, Buchan GJ, Rühl M, Mukai K, Salvatore SR, Ogawa E, Andersen SD, Iversen MB, Thielke AL, Gunderstofte C, Motwani M, Møller CT, Jakobsen AS, Fitzgerald KA, Roos J, Lin R, Maier TJ, Goldbach-Mansky R, Miner CA, Qian W, Miner JJ, Rigby RE, Rehwinkel J, Jakobsen MR, Arai H, Taguchi T, Schopfer FJ, Olagnier D, Holm CK. Proc Natl Acad Sci U S A 115 E7768-E7775 (2018)
  21. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Allen AC, Wilk MM, Misiak A, Borkner L, Murphy D, Mills KHG. Mucosal Immunol 11 1763-1776 (2018)
  22. Letter Anticancer flavonoids are mouse-selective STING agonists. Kim S, Li L, Maliga Z, Yin Q, Wu H, Mitchison TJ. ACS Chem Biol 8 1396-1401 (2013)
  23. USP18 recruits USP20 to promote innate antiviral response through deubiquitinating STING/MITA. Zhang M, Zhang MX, Zhang Q, Zhu GF, Yuan L, Zhang DE, Zhu Q, Yao J, Shu HB, Zhong B. Cell Res 26 1302-1319 (2016)
  24. Analysis of Drosophila STING Reveals an Evolutionarily Conserved Antimicrobial Function. Martin M, Hiroyasu A, Guzman RM, Roberts SA, Goodman AG. Cell Rep 23 3537-3550.e6 (2018)
  25. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. Ryu MH, Gomelsky M. ACS Synth Biol 3 802-810 (2014)
  26. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Folcher M, Oesterle S, Zwicky K, Thekkottil T, Heymoz J, Hohmann M, Christen M, Daoud El-Baba M, Buchmann P, Fussenegger M. Nat Commun 5 5392 (2014)
  27. MPYS/STING-mediated TNF-α, not type I IFN, is essential for the mucosal adjuvant activity of (3'-5')-cyclic-di-guanosine-monophosphate in vivo. Blaauboer SM, Gabrielle VD, Jin L. J Immunol 192 492-502 (2014)
  28. The mucosal adjuvant cyclic di-GMP enhances antigen uptake and selectively activates pinocytosis-efficient cells in vivo. Blaauboer SM, Mansouri S, Tucker HR, Wang HL, Gabrielle VD, Jin L. Elife 4 (2015)
  29. Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP). Kim H, Youn SJ, Kim SO, Ko J, Lee JO, Choi BS. J Biol Chem 290 16393-16402 (2015)
  30. The STING phase-separator suppresses innate immune signalling. Yu X, Zhang L, Shen J, Zhai Y, Jiang Q, Yi M, Deng X, Ruan Z, Fang R, Chen Z, Ning X, Jiang Z. Nat Cell Biol 23 330-340 (2021)
  31. IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. Oriss TB, Raundhal M, Morse C, Huff RE, Das S, Hannum R, Gauthier MC, Scholl KL, Chakraborty K, Nouraie SM, Wenzel SE, Ray P, Ray A. JCI Insight 2 91019 (2017)
  32. Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. Jones CP, Ferré-D'Amaré AR. EMBO J 33 2692-2703 (2014)
  33. PTPN1/2-mediated dephosphorylation of MITA/STING promotes its 20S proteasomal degradation and attenuates innate antiviral response. Xia T, Yi XM, Wu X, Shang J, Shu HB. Proc Natl Acad Sci U S A 116 20063-20069 (2019)
  34. Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness. Lolicato M, Bucchi A, Arrigoni C, Zucca S, Nardini M, Schroeder I, Simmons K, Aquila M, DiFrancesco D, Bolognesi M, Schwede F, Kashin D, Fishwick CW, Johnson AP, Thiel G, Moroni A. Nat Chem Biol 10 457-462 (2014)
  35. Enzymatically active and inactive phosphodiesterases and diguanylate cyclases are involved in regulation of Motility or sessility in Escherichia coli CFT073. Spurbeck RR, Tarrien RJ, Mobley HL. mBio 3 e00307-12 (2012)
  36. An alternative splicing isoform of MITA antagonizes MITA-mediated induction of type I IFNs. Chen H, Pei R, Zhu W, Zeng R, Wang Y, Wang Y, Lu M, Chen X. J Immunol 192 1162-1170 (2014)
  37. USP49 negatively regulates cellular antiviral responses via deconjugating K63-linked ubiquitination of MITA. Ye L, Zhang Q, Liuyu T, Xu Z, Zhang MX, Luo MH, Zeng WB, Zhu Q, Lin D, Zhong B. PLoS Pathog 15 e1007680 (2019)
  38. Bacillus Calmette-Guérin Overexpressing an Endogenous Stimulator of Interferon Genes Agonist Provides Enhanced Protection Against Pulmonary Tuberculosis. Dey RJ, Dey B, Singh AK, Praharaj M, Bishai W. J Infect Dis 221 1048-1056 (2020)
  39. The ER membrane adaptor ERAdP senses the bacterial second messenger c-di-AMP and initiates anti-bacterial immunity. Xia P, Wang S, Xiong Z, Zhu X, Ye B, Du Y, Meng S, Qu Y, Liu J, Gao G, Tian Y, Fan Z. Nat Immunol 19 141-150 (2018)
  40. Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity. Li W, Cui T, Hu L, Wang Z, Li Z, He ZG. Nat Commun 6 8330 (2015)
  41. Novel TMEM173 Mutation and the Role of Disease Modifying Alleles. Keskitalo S, Haapaniemi E, Einarsdottir E, Rajamäki K, Heikkilä H, Ilander M, Pöyhönen M, Morgunova E, Hokynar K, Lagström S, Kivirikko S, Mustjoki S, Eklund K, Saarela J, Kere J, Seppänen MRJ, Ranki A, Hannula-Jouppi K, Varjosalo M. Front Immunol 10 2770 (2019)
  42. A cell-based high throughput screening assay for the discovery of cGAS-STING pathway agonists. Liu B, Tang L, Zhang X, Ma J, Sehgal M, Cheng J, Zhang X, Zhou Y, Du Y, Kulp J, Guo JT, Chang J. Antiviral Res 147 37-46 (2017)
  43. Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. Uhlorn BL, Jackson R, Li S, Bratton SM, Van Doorslaer K, Campos SK. PLoS Pathog 16 e1009028 (2020)
  44. Supraphysiologic Testosterone Induces Ferroptosis and Activates Immune Pathways through Nucleophagy in Prostate Cancer. Kumar R, Mendonca J, Owoyemi O, Boyapati K, Thomas N, Kanacharoen S, Coffey M, Topiwala D, Gomes C, Ozbek B, Jones T, Rosen M, Dong L, Wiens S, Brennen WN, Isaacs JT, De Marzo AM, Markowski MC, Antonarakis ES, Qian DZ, Pienta KJ, Pardoll DM, Carducci MA, Denmeade SR, Kachhap SK. Cancer Res 81 5948-5962 (2021)
  45. Novel c-di-GMP recognition modes of the mouse innate immune adaptor protein STING. Chin KH, Tu ZL, Su YC, Yu YJ, Chen HC, Lo YC, Chen CP, Barber GN, Chuah ML, Liang ZX, Chou SH. Acta Crystallogr D Biol Crystallogr 69 352-366 (2013)
  46. Discovery and Mechanistic Study of a Novel Human-Stimulator-of-Interferon-Genes Agonist. Zhang X, Liu B, Tang L, Su Q, Hwang N, Sehgal M, Cheng J, Ma J, Zhang X, Tan Y, Zhou Y, Duan Z, DeFilippis VR, Viswanathan U, Kulp J, Du Y, Guo JT, Chang J. ACS Infect Dis 5 1139-1149 (2019)
  47. Comment Innate sensing of bacterial cyclic dinucleotides: more than just STING. Bowie AG. Nat Immunol 13 1137-1139 (2012)
  48. Rat and human STINGs profile similarly towards anticancer/antiviral compounds. Zhang H, Han MJ, Tao J, Ye ZY, Du XX, Deng MJ, Zhang XY, Li LF, Jiang ZF, Su XD. Sci Rep 5 18035 (2015)
  49. PPM1G restricts innate immune signaling mediated by STING and MAVS and is hijacked by KSHV for immune evasion. Yu K, Tian H, Deng H. Sci Adv 6 eabd0276 (2020)
  50. Type I IFN and not TNF, is Essential for Cyclic Di-nucleotide-elicited CTL by a Cytosolic Cross-presentation Pathway. Lirussi D, Ebensen T, Schulze K, Trittel S, Duran V, Liebich I, Kalinke U, Guzmán CA. EBioMedicine 22 100-111 (2017)
  51. An alternatively spliced STING isoform localizes in the cytoplasmic membrane and directly senses extracellular cGAMP. Li X, Zhu Y, Zhang X, An X, Weng M, Shi J, Wang S, Liu C, Luo S, Zheng T. J Clin Invest 132 e144339 (2022)
  52. The Scaffolding Protein IQGAP1 Interacts with NLRC3 and Inhibits Type I IFN Production. Tocker AM, Durocher E, Jacob KD, Trieschman KE, Talento SM, Rechnitzer AA, Roberts DM, Davis BK. J Immunol 199 2896-2909 (2017)
  53. Crystal structures of porcine STINGCBD-CDN complexes reveal the mechanism of ligand recognition and discrimination of STING proteins. Cong X, Yuan Z, Du Y, Wu B, Lu D, Wu X, Zhang Y, Li F, Wei B, Li J, Wu J, Xu S, Wang J, Qi J, Shang G, Gu L. J Biol Chem 294 11420-11432 (2019)
  54. Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli. Gao S, Romdhane SB, Beullens S, Kaever V, Lambrichts I, Fauvart M, Michiels J. Appl Microbiol Biotechnol 98 4589-4602 (2014)
  55. Stimulator of IFN genes-mediated DNA-sensing pathway is suppressed by NLRP3 agonists and regulated by mitofusin 1 and TBC1D15, mitochondrial dynamics mediators. Kwon D, Park E, Kang SJ. FASEB J 31 4866-4878 (2017)
  56. Attenuation of cGAS/STING activity during mitosis. Uhlorn BL, Gamez ER, Li S, Campos SK. Life Sci Alliance 3 e201900636 (2020)
  57. Cyclic di-GMP regulates Mycobacterium tuberculosis resistance to ethionamide. Zhang HN, Xu ZW, Jiang HW, Wu FL, He X, Liu Y, Guo SJ, Li Y, Bi LJ, Deng JY, Zhang XE, Tao SC. Sci Rep 7 5860 (2017)
  58. STING regulates BCR signaling in normal and malignant B cells. Tang CA, Lee AC, Chang S, Xu Q, Shao A, Lo Y, Spalek WT, Pinilla-Ibarz JA, Del Valle JR, Hu CA. Cell Mol Immunol 18 1016-1031 (2021)
  59. Cutting Edge: Novel Tmem173 Allele Reveals Importance of STING N Terminus in Trafficking and Type I IFN Production. Surpris G, Chan J, Thompson M, Ilyukha V, Liu BC, Atianand M, Sharma S, Volkova T, Smirnova I, Fitzgerald KA, Poltorak A. J Immunol 196 547-552 (2016)
  60. Mechanisms of transcriptional activation of the stimulator of interferon genes by transcription factors CREB and c-Myc. Wang YY, Jin R, Zhou GP, Xu HG. Oncotarget 7 85049-85057 (2016)
  61. Stimulation of innate immunity by in vivo cyclic di-GMP synthesis using adenovirus. Koestler BJ, Seregin SS, Rastall DP, Aldhamen YA, Godbehere S, Amalfitano A, Waters CM. Clin Vaccine Immunol 21 1550-1559 (2014)
  62. A cyclic dinucleotide containing 2-aminopurine is a general fluorescent sensor for c-di-GMP and 3',3'-cGAMP. Roembke BT, Zhou J, Zheng Y, Sayre D, Lizardo A, Bernard L, Sintim HO. Mol Biosyst 10 1568-1575 (2014)
  63. Crystal structure and functional implication of bacterial STING. Ko TP, Wang YC, Yang CS, Hou MH, Chen CJ, Chiu YF, Chen Y. Nat Commun 13 26 (2022)
  64. High Levels of Cyclic Di-GMP in Klebsiella pneumoniae Attenuate Virulence in the Lung. Rosen DA, Twentyman J, Hunstad DA. Infect Immun 86 e00647-17 (2018)
  65. Nucleic acid sensing and innate immunity: signaling pathways controlling viral pathogenesis and autoimmunity. Ahlers LR, Goodman AG. Curr Clin Microbiol Rep 3 132-141 (2016)
  66. High-level expression of STING restricts susceptibility to HBV by mediating type III IFN induction. Dansako H, Imai H, Ueda Y, Satoh S, Shimotohno K, Kato N. FASEB Bioadv 1 67-80 (2019)
  67. Transcription-independent regulation of STING activation and innate immune responses by IRF8 in monocytes. Luo WW, Tong Z, Cao P, Wang FB, Liu Y, Zheng ZQ, Wang SY, Li S, Wang YY. Nat Commun 13 4822 (2022)
  68. Functional coding haplotypes and machine-learning feature elimination identifies predictors of Methotrexate Response in Rheumatoid Arthritis patients. Lim AJW, Lim LJ, Ooi BNS, Koh ET, Tan JWL, TTSH RA Study Group, Chong SS, Khor CC, Tucker-Kellogg L, Leong KP, Lee CG. EBioMedicine 75 103800 (2022)
  69. Identification and Characterization of c-di-GMP Metabolic Enzymes of Leptospira interrogans and c-di-GMP Fluctuations After Thermal Shift and Infection. Xiao G, Kong L, Che R, Yi Y, Zhang Q, Yan J, Lin X. Front Microbiol 9 764 (2018)
  70. STING signalling: an emerging common pathway in autoimmunity and cancer. McCaffary D. Immunopharmacol Immunotoxicol 39 253-258 (2017)
  71. Distinct Dynamic and Conformational Features of Human STING in Response to 2'3'-cGAMP and c-di-GMP. Guo J, Wang J, Fan J, Zhang Y, Dong W, Chen CP. Chembiochem 20 1838-1847 (2019)
  72. Highly Efficient Preparation of Cyclic Dinucleotides via Engineering of Dinucleotide Cyclases in Escherichia coli. Lv Y, Sun Q, Wang X, Lu Y, Li Y, Yuan H, Zhu J, Zhu D. Front Microbiol 10 2111 (2019)
  73. Intranasal COVID-19 vaccine induces respiratory memory T cells and protects K18-hACE mice against SARS-CoV-2 infection. Diallo BK, Ní Chasaide C, Wong TY, Schmitt P, Lee KS, Weaver K, Miller O, Cooper M, Jazayeri SD, Damron FH, Mills KHG. NPJ Vaccines 8 68 (2023)
  74. No magnesium is needed for binding of the stimulator of interferon genes to cyclic dinucleotides. Smola M, Birkus G, Boura E. Acta Crystallogr F Struct Biol Commun 75 593-598 (2019)
  75. Recent progress on the activation of the cGAS-STING pathway and its regulation by biomolecular condensation. Yu X, Zhao Z, Jiang Z. J Mol Cell Biol 14 mjac042 (2022)
  76. 10th anniversary of discovering cGAMP: synthesis and beyond. Chen C. Org Chem Front 10 1086-1098 (2023)
  77. A STING-based fluorescent polarization assay for monitoring activities of cyclic dinucleotide metabolizing enzymes. Karanja CW, Yeboah KS, Ong WWS, Sintim HO. RSC Chem Biol 2 206-214 (2021)
  78. Letter Global transcriptional changes in response to cGAMP depend on STING in human THP-1 cells. Hansen AL, Brandtoft AM, Nyegaard M, Thielke AL, Olagnier D, Holm CK. Cell Mol Immunol 15 983-985 (2018)
  79. MARCH5 promotes STING pathway activation by suppressing polymer formation of oxidized STING. Son K, Jeong S, Eom E, Kwon D, Kang SJ. EMBO Rep 24 e57496 (2023)
  80. STAT2 hinders STING intracellular trafficking and reshapes its activation in response to DNA damage. Wang C, Nan J, Holvey-Bates E, Chen X, Wightman S, Latif MB, Zhao J, Li X, Sen GC, Stark GR, Wang Y. Proc Natl Acad Sci U S A 120 e2216953120 (2023)
  81. Visualization of c-di-GMP in multicellular Dictyostelium stages. Ide H, Hayashida Y, Morimoto YV. Front Cell Dev Biol 11 1237778 (2023)
  82. PvML1 suppresses bacterial infection by recognizing LPS and regulating AMP expression in shrimp. Wang Y, Yang LG, Feng GP, Yao ZL, Li SH, Zhou JF, Fang WH, Chen YH, Li XC. Front Immunol 13 1088862 (2022)
  83. All-Atom Simulations Uncover Structural and Dynamical Properties of STING Proteins in the Membrane System. Payne RT, Crivelli S, Watanabe M. J Chem Inf Model 62 4486-4499 (2022)
  84. Arabinose- and xylose-modified analogs of 2',3'-cGAMP act as STING agonists. Xie W, Lama L, Yang X, Kuryavyi V, Bhattacharya S, Nudelman I, Yang G, Ouerfelli O, Glickman JF, Jones RA, Tuschl T, Patel DJ. Cell Chem Biol 30 1366-1376.e7 (2023)
  85. The activity of disease-causative STING variants can be suppressed by wild-type STING through heterocomplex formation. Shindo R, Kuchitsu Y, Mukai K, Taguchi T. Front Cell Dev Biol 10 1037999 (2022)