4fdn Citations

Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors.

Proc Natl Acad Sci U S A 109 11354-9 (2012)
Related entries: 4fdo, 4fdp, 4feh, 4ff6

Cited: 87 times
EuropePMC logo PMID: 22733761

Abstract

Resistance against currently used antitubercular therapeutics increasingly undermines efforts to contain the worldwide tuberculosis (TB) epidemic. Recently, benzothiazinone (BTZ) inhibitors have shown nanomolar potency against both drug-susceptible and multidrug-resistant strains of the tubercle bacillus. However, their proposed mode of action is lacking structural evidence. We report here the crystal structure of the BTZ target, FAD-containing oxidoreductase Mycobacterium tuberculosis DprE1, which is essential for viability. Different crystal forms of ligand-free DprE1 reveal considerable levels of structural flexibility of two surface loops that seem to govern accessibility of the active site. Structures of complexes with the BTZ-derived nitroso derivative CT325 reveal the mode of inhibitor binding, which includes a covalent link to conserved Cys387, and reveal a trifluoromethyl group as a second key determinant of interaction with the enzyme. Surprisingly, we find that a noncovalent complex was formed between DprE1 and CT319, which is structurally identical to CT325 except for an inert nitro group replacing the reactive nitroso group. This demonstrates that binding of BTZ-class inhibitors to DprE1 is not strictly dependent on formation of the covalent link to Cys387. On the basis of the structural and activity data, we propose that the complex of DrpE1 bound to CT325 is a representative of the BTZ-target complex. These results mark a significant step forward in the characterization of a key TB drug target.

Articles - 4fdn mentioned but not cited (3)

  1. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Batt SM, Jabeen T, Bhowruth V, Quill L, Lund PA, Eggeling L, Alderwick LJ, Fütterer K, Besra GS. Proc Natl Acad Sci U S A 109 11354-11359 (2012)
  2. Structure, dynamics, and interaction of Mycobacterium tuberculosis (Mtb) DprE1 and DprE2 examined by molecular modeling, simulation, and electrostatic studies. Bhutani I, Loharch S, Gupta P, Madathil R, Parkesh R. PLoS One 10 e0119771 (2015)
  3. Crystal structure of decaprenylphosphoryl-β- D-ribose 2'-epimerase from Mycobacterium smegmatis. Li H, Jogl G. Proteins 81 538-543 (2013)


Reviews citing this publication (29)

  1. Advances in the development of new tuberculosis drugs and treatment regimens. Zumla A, Nahid P, Cole ST. Nat Rev Drug Discov 12 388-404 (2013)
  2. Prospects for new antibiotics: a molecule-centered perspective. Walsh CT, Wencewicz TA. J Antibiot (Tokyo) 67 7-22 (2014)
  3. Antibiotics in the clinical pipeline in October 2019. Butler MS, Paterson DL. J Antibiot (Tokyo) 73 329-364 (2020)
  4. The Mycobacterial Cell Wall--Peptidoglycan and Arabinogalactan. Alderwick LJ, Harrison J, Lloyd GS, Birch HL. Cold Spring Harb Perspect Med 5 a021113 (2015)
  5. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. Crit Rev Biochem Mol Biol 49 361-399 (2014)
  6. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Abrahams KA, Besra GS. Parasitology 145 116-133 (2018)
  7. The tuberculosis drug discovery and development pipeline and emerging drug targets. Mdluli K, Kaneko T, Upton A. Cold Spring Harb Perspect Med 5 a021154 (2015)
  8. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Sim E, Abuhammad A, Ryan A. Br J Pharmacol 171 2705-2725 (2014)
  9. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Jackson M, McNeil MR, Brennan PJ. Future Microbiol 8 855-875 (2013)
  10. Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis? Goldman RC. Tuberculosis (Edinb) 93 569-588 (2013)
  11. Targeting the mycobacterial envelope for tuberculosis drug development. Favrot L, Ronning DR. Expert Rev Anti Infect Ther 10 1023-1036 (2012)
  12. The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis. Riccardi G, Pasca MR, Chiarelli LR, Manina G, Mattevi A, Binda C. Appl Microbiol Biotechnol 97 8841-8848 (2013)
  13. Recent advancements in the development of anti-tuberculosis drugs. Chetty S, Ramesh M, Singh-Pillay A, Soliman ME. Bioorg Med Chem Lett 27 370-386 (2017)
  14. Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors. Piton J, Foo CS, Cole ST. Drug Discov Today 22 526-533 (2017)
  15. Trends in discovery of new drugs for tuberculosis therapy. Riccardi G, Pasca MR. J Antibiot (Tokyo) 67 655-659 (2014)
  16. Tuberculosis drug discovery and emerging targets. Mdluli K, Kaneko T, Upton A. Ann N Y Acad Sci 1323 56-75 (2014)
  17. Antibiotics in the clinical pipeline as of December 2022. Butler MS, Henderson IR, Capon RJ, Blaskovich MAT. J Antibiot (Tokyo) 76 431-473 (2023)
  18. MmpL3 a potential new target for development of novel anti-tuberculosis drugs. Rayasam GV. Expert Opin Ther Targets 18 247-256 (2014)
  19. Mycobacterial tuberculosis Enzyme Targets and their Inhibitors. Saxena AK, Singh A. Curr Top Med Chem 19 337-355 (2019)
  20. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Batt SM, Burke CE, Moorey AR, Besra GS. Cell Surf 6 100044 (2020)
  21. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Singh P, Rameshwaram NR, Ghosh S, Mukhopadhyay S. Future Microbiol 13 689-710 (2018)
  22. Recent Progress and Challenges for Drug-Resistant Tuberculosis Treatment. Stephanie F, Saragih M, Tambunan USF. Pharmaceutics 13 592 (2021)
  23. Decaprenyl-phosphoryl-ribose 2'-epimerase (DprE1): challenging target for antitubercular drug discovery. Gawad J, Bonde C. Chem Cent J 12 72 (2018)
  24. Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics. Fang Z, van der Merwe RG, Warren RM, Schubert WD, Gey van Pittius NC. Tuberculosis (Edinb) 95 131-136 (2015)
  25. The eradication of leprosy: molecular modeling techniques for novel drug discovery. Anusuya S, Natarajan J. Expert Opin Drug Discov 8 1239-1251 (2013)
  26. Malaria and tuberculosis as diseases of neglected populations: state of the art in chemotherapy and advances in the search for new drugs. de Araújo RV, Santos SS, Sanches LM, Giarolla J, El Seoud O, Ferreira EI. Mem Inst Oswaldo Cruz 115 e200229 (2020)
  27. 4H-1,3-Benzothiazin-4-one a Promising Class Against MDR/XDR-TB. de Souza MVN, Nogueira TCM. Curr Top Med Chem 19 567-578 (2019)
  28. Implications of Fragment-Based Drug Discovery in Tuberculosis and HIV. Mallakuntla MK, Togre NS, Santos DB, Tiwari S. Pharmaceuticals (Basel) 15 1415 (2022)
  29. Recent Advances of DprE1 Inhibitors against Mycobacterium tuberculosis: Computational Analysis of Physicochemical and ADMET Properties. Amado PSM, Woodley C, Cristiano MLS, O'Neill PM. ACS Omega 7 40659-40681 (2022)

Articles citing this publication (55)

  1. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. Makarov V, Lechartier B, Zhang M, Neres J, van der Sar AM, Raadsen SA, Hartkoorn RC, Ryabova OB, Vocat A, Decosterd LA, Widmer N, Buclin T, Bitter W, Andries K, Pojer F, Dyson PJ, Cole ST. EMBO Mol Med 6 372-383 (2014)
  2. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, Ray S. J Biomol Struct Dyn 39 6306-6316 (2021)
  3. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Wang F, Sambandan D, Halder R, Wang J, Batt SM, Weinrick B, Ahmad I, Yang P, Zhang Y, Kim J, Hassani M, Huszar S, Trefzer C, Ma Z, Kaneko T, Mdluli KE, Franzblau S, Chatterjee AK, Johnsson K, Mikusova K, Besra GS, Fütterer K, Robbins SH, Barnes SW, Walker JR, Jacobs WR, Schultz PG. Proc Natl Acad Sci U S A 110 E2510-7 (2013)
  4. Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen. Favrot L, Grzegorzewicz AE, Lajiness DH, Marvin RK, Boucau J, Isailovic D, Jackson M, Ronning DR. Nat Commun 4 2748 (2013)
  5. Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: an integrated computational approach. Mishra CB, Pandey P, Sharma RD, Malik MZ, Mongre RK, Lynn AM, Prasad R, Jeon R, Prakash A. Brief Bioinform 22 1346-1360 (2021)
  6. OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. Hariguchi N, Chen X, Hayashi Y, Kawano Y, Fujiwara M, Matsuba M, Shimizu H, Ohba Y, Nakamura I, Kitamoto R, Shinohara T, Uematsu Y, Ishikawa S, Itotani M, Haraguchi Y, Takemura I, Matsumoto M. Antimicrob Agents Chemother 64 e02020-19 (2020)
  7. Thiolates chemically induce redox activation of BTZ043 and related potent nitroaromatic anti-tuberculosis agents. Tiwari R, Moraski GC, Krchňák V, Miller PA, Colon-Martinez M, Herrero E, Oliver AG, Miller MJ. J Am Chem Soc 135 3539-3549 (2013)
  8. The 8-Pyrrole-Benzothiazinones Are Noncovalent Inhibitors of DprE1 from Mycobacterium tuberculosis. Makarov V, Neres J, Hartkoorn RC, Ryabova OB, Kazakova E, Šarkan M, Huszár S, Piton J, Kolly GS, Vocat A, Conroy TM, Mikušová K, Cole ST. Antimicrob Agents Chemother 59 4446-4452 (2015)
  9. Lcp1 Is a Phosphotransferase Responsible for Ligating Arabinogalactan to Peptidoglycan in Mycobacterium tuberculosis. Harrison J, Lloyd G, Joe M, Lowary TL, Reynolds E, Walters-Morgan H, Bhatt A, Lovering A, Besra GS, Alderwick LJ. mBio 7 e00972-16 (2016)
  10. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Mir F, Shafi S, Zaman MS, Kalia NP, Rajput VS, Mulakayala C, Mulakayala N, Khan IA, Alam MS. Eur J Med Chem 76 274-283 (2014)
  11. Endless Resistance. Endless Antibiotics? Fisher JF, Mobashery S. Medchemcomm 7 37-49 (2016)
  12. Covalent modification of the Mycobacterium tuberculosis FAS-II dehydratase by Isoxyl and Thiacetazone. Grzegorzewicz AE, Eynard N, Quémard A, North EJ, Margolis A, Lindenberger JJ, Jones V, Korduláková J, Brennan PJ, Lee RE, Ronning DR, McNeil MR, Jackson M. ACS Infect Dis 1 91-97 (2015)
  13. Benzothiazinones mediate killing of Corynebacterineae by blocking decaprenyl phosphate recycling involved in cell wall biosynthesis. Grover S, Alderwick LJ, Mishra AK, Krumbach K, Marienhagen J, Eggeling L, Bhatt A, Besra GS. J Biol Chem 289 6177-6187 (2014)
  14. Structure-Based Drug Design and Characterization of Sulfonyl-Piperazine Benzothiazinone Inhibitors of DprE1 from Mycobacterium tuberculosis. Piton J, Vocat A, Lupien A, Foo CS, Riabova O, Makarov V, Cole ST. Antimicrob Agents Chemother 62 e00681-18 (2018)
  15. Targeting virus-host interaction by novel pyrimidine derivative: an in silico approach towards discovery of potential drug against COVID-19. Rane JS, Pandey P, Chatterjee A, Khan R, Kumar A, Prakash A, Ray S. J Biomol Struct Dyn 39 5768-5778 (2021)
  16. In Vivo Dearomatization of the Potent Antituberculosis Agent BTZ043 via Meisenheimer Complex Formation. Kloss F, Krchnak V, Krchnakova A, Schieferdecker S, Dreisbach J, Krone V, Möllmann U, Hoelscher M, Miller MJ. Angew Chem Int Ed Engl 56 2187-2191 (2017)
  17. Novel insight into the reaction of nitro, nitroso and hydroxylamino benzothiazinones and of benzoxacinones with Mycobacterium tuberculosis DprE1. Richter A, Rudolph I, Möllmann U, Voigt K, Chung CW, Singh OMP, Rees M, Mendoza-Losana A, Bates R, Ballell L, Batt S, Veerapen N, Fütterer K, Besra G, Imming P, Argyrou A. Sci Rep 8 13473 (2018)
  18. Structure-Based Screening to Discover New Inhibitors for Papain-like Proteinase of SARS-CoV-2: An In Silico Study. Jamalan M, Barzegari E, Gholami-Borujeni F. J Proteome Res 20 1015-1026 (2021)
  19. In Vitro Activity of PBTZ169 against Multiple Mycobacterium Species. Shi J, Lu J, Wen S, Zong Z, Huo F, Luo J, Liang Q, Li Y, Huang H, Pang Y. Antimicrob Agents Chemother 62 e01314-18 (2018)
  20. Identification of Better Pharmacokinetic Benzothiazinone Derivatives as New Antitubercular Agents. Lv K, You X, Wang B, Wei Z, Chai Y, Wang B, Wang A, Huang G, Liu M, Lu Y. ACS Med Chem Lett 8 636-641 (2017)
  21. Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis. Foo CS, Lechartier B, Kolly GS, Boy-Röttger S, Neres J, Rybniker J, Lupien A, Sala C, Piton J, Cole ST. Antimicrob Agents Chemother 60 6451-6459 (2016)
  22. Fungal naphtho-γ-pyrones: Potent antibiotics for drug-resistant microbial pathogens. He Y, Tian J, Chen X, Sun W, Zhu H, Li Q, Lei L, Yao G, Xue Y, Wang J, Li H, Zhang Y. Sci Rep 6 24291 (2016)
  23. Scaffold Morphing To Identify Novel DprE1 Inhibitors with Antimycobacterial Activity. R MM, Shandil R, Panda M, Sadler C, Ambady A, Panduga V, Kumar N, Mahadevaswamy J, Sreenivasaiah M, Narayan A, Guptha S, Sharma S, Sambandamurthy VK, Ramachandran V, Mallya M, Cooper C, Mdluli K, Butler S, Tommasi R, Iyer PS, Narayanan S, Chatterji M, Shirude PS. ACS Med Chem Lett 10 1480-1485 (2019)
  24. Investigation of the anti-TB potential of selected propolis constituents using a molecular docking approach. Ali MT, Blicharska N, Shilpi JA, Seidel V. Sci Rep 8 12238 (2018)
  25. Structure of arylamine N-acetyltransferase from Mycobacterium tuberculosis determined by cross-seeding with the homologous protein from M. marinum: triumph over adversity. Abuhammad A, Lowe ED, McDonough MA, Shaw Stewart PD, Kolek SA, Sim E, Garman EF. Acta Crystallogr D Biol Crystallogr 69 1433-1446 (2013)
  26. Benzothiazinethione is a potent preclinical candidate for the treatment of drug-resistant tuberculosis. Gao C, Peng C, Shi Y, You X, Ran K, Xiong L, Ye TH, Zhang L, Wang N, Zhu Y, Liu K, Zuo W, Yu L, Wei Y. Sci Rep 6 29717 (2016)
  27. D-Cycloserine destruction by alanine racemase and the limit of irreversible inhibition. de Chiara C, Homšak M, Prosser GA, Douglas HL, Garza-Garcia A, Kelly G, Purkiss AG, Tate EW, de Carvalho LPS. Nat Chem Biol 16 686-694 (2020)
  28. Antimycobacterial assessment of Salicylanilide benzoates including multidrug-resistant tuberculosis strains. Krátký M, Vinšová J, Stolaříková J. Molecules 17 12812-12820 (2012)
  29. Chemical Space Exploration of DprE1 Inhibitors Using Chemoinformatics and Artificial Intelligence. Chhabra S, Kumar S, Parkesh R. ACS Omega 6 14430-14441 (2021)
  30. Identification of hydantoin based Decaprenylphosphoryl-β-D-Ribose Oxidase (DprE1) inhibitors as antimycobacterial agents using computational tools. Mali SN, Pandey A, Bhandare RR, Shaik AB. Sci Rep 12 16368 (2022)
  31. A large scale virtual screen of DprE1. Wilsey C, Gurka J, Toth D, Franco J. Comput Biol Chem 47 121-125 (2013)
  32. Nitroarenes as Antitubercular Agents: Stereoelectronic Modulation to Mitigate Mutagenicity. Landge S, Ramachandran V, Kumar A, Neres J, Murugan K, Sadler C, Fellows MD, Humnabadkar V, Vachaspati P, Raichurkar A, Sharma S, Ravishankar S, Guptha S, Sambandamurthy VK, Balganesh TS, Ugarkar BG, Balasubramanian V, Bandodkar BS, Panda M. ChemMedChem 11 331-339 (2016)
  33. A Versatile Synthesis of Pentacosafuranoside Subunit Reminiscent of Mycobacterial Arabinogalactan Employing One Strategic Glycosidation Protocol. Pasari S, Manmode S, Walke G, Hotha S. Chemistry 24 1128-1139 (2018)
  34. Identification of a new series of benzothiazinone derivatives with excellent antitubercular activity and improved pharmacokinetic profiles. Xiong L, Gao C, Shi YJ, Tao X, Rong J, Liu KL, Peng CT, Wang NY, Lei Q, Zhang YW, Yu LT, Wei YQ. RSC Adv 8 11163-11176 (2018)
  35. Efficacy of PBTZ169 and pretomanid against Mycobacterium avium, Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum in BALB/c mice models. Zheng L, Qi X, Zhang W, Wang H, Fu L, Wang B, Chen X, Chen X, Lu Y. Front Cell Infect Microbiol 13 1115530 (2023)
  36. Mycobacterium tuberculosis DprE1 Inhibitor OPC-167832 Is Active against Mycobacterium abscessus In Vitro. Sarathy JP, Zimmerman MD, Gengenbacher M, Dartois V, Dick T. Antimicrob Agents Chemother 66 e0123722 (2022)
  37. Mycobacterium tuberculosis Cell Wall Permeability Model Generation Using Chemoinformatics and Machine Learning Approaches. Nagamani S, Sastry GN. ACS Omega 6 17472-17482 (2021)
  38. A Simple Work-Up-free, Solvent-free Approach to Novel Amino Acid Linked 1,4-Disubstituted 1,2,3-Triazoles as Potent Antituberculosis Agents. Garg A, Borah D, Trivedi P, Gogoi D, Chaliha AK, Ali AA, Chetia D, Chaturvedi V, Sarma D. ACS Omega 5 29830-29837 (2020)
  39. Colworth prize lecture 2016: exploiting new biological targets from a whole-cell phenotypic screening campaign for TB drug discovery. Moynihan PJ, Besra GS. Microbiology (Reading) 163 1385-1388 (2017)
  40. Identification of Mutations Associated With Macozinone-Resistant in Mycobacterium Tuberculosis. Chen X, Li Y, Wang B, Lu Y. Curr Microbiol 79 205 (2022)
  41. Congress Mycobacterium tuberculosis... Can we beat it? Report from a Euroscicon conference 2013. Maitra A, Bhakta S. Virulence 4 499-503 (2013)
  42. Assay development and inhibition of the Mt-DprE2 essential reductase from Mycobacterium tuberculosis. Batt SM, Toth S, Rodriguez B, Abrahams KA, Veerapen N, Chiodarelli G, Cox LR, Moynihan PJ, Lelievre J, Fütterer K, Besra GS. Microbiology (Reading) 169 (2023)
  43. Discovery of Novel Thiophene-arylamide Derivatives as DprE1 Inhibitors with Potent Antimycobacterial Activities. Wang P, Batt SM, Wang B, Fu L, Qin R, Lu Y, Li G, Besra GS, Huang H. J Med Chem 64 6241-6261 (2021)
  44. Drug repositioning for anti-tuberculosis drugs: an in silico polypharmacology approach. Madugula SS, Nagamani S, Jamir E, Priyadarsinee L, Sastry GN. Mol Divers 26 1675-1695 (2022)
  45. Metabolism of SKLB-TB1001, a Potent Antituberculosis Agent, in Animals. Xiong L, Gao C, Shi YJ, Tao X, Peng CT, Rong J, Liu KL, Lei Q, Zhang YW, Wang NY, Yu LT. Antimicrob Agents Chemother 62 e02375-17 (2018)
  46. A GFP-strategy for efficient recombinant protein overexpression and purification in Mycobacterium smegmatis. Radhakrishnan A, Furze CM, Ahangar MS, Fullam E. RSC Adv 8 33087-33095 (2018)
  47. Antituberculosis Macozinone Extended-Release Tablets To Enhance Bioavailability: a Pilot Pharmacokinetic Study in Beagle Dogs. Koryakova A, Shcherbakova V, Riabova O, Kazaishvili Y, Bolgarin R, Makarov V. Microbiol Spectr 11 e0232722 (2023)
  48. DprE2 is a molecular target of the anti-tubercular nitroimidazole compounds pretomanid and delamanid. Abrahams KA, Batt SM, Gurcha SS, Veerapen N, Bashiri G, Besra GS. Nat Commun 14 3828 (2023)
  49. Structural and inhibition analysis of novel sulfur-rich 2-mercaptobenzothiazole and 1,2,3-triazole ligands against Mycobacterium tuberculosis DprE1 enzyme. Karan S, Kashyap VK, Shafi S, Saxena AK. J Mol Model 23 241 (2017)
  50. Synthesis of Novel Derivatives of 5,6,7,8-Tetrahydroquinazolines Using α-Aminoamidines and In Silico Screening of Their Biological Activity. Snizhko AD, Kyrychenko AV, Gladkov ES. Int J Mol Sci 23 3781 (2022)
  51. Effects of benzothiazinone and ethambutol on the integrity of the corynebacterial cell envelope. Meyer FM, Repnik U, Karnaukhova E, Schubert K, Bramkamp M. Cell Surf 10 100116 (2023)
  52. Exploring biogenic chalcones as DprE1 inhibitors for antitubercular activity via in silico approach. Rathod S, Chavan P, Mahuli D, Rochlani S, Shinde S, Pawar S, Choudhari P, Dhavale R, Mudalkar P, Tamboli F. J Mol Model 29 113 (2023)
  53. MadR mediates acyl CoA-dependent regulation of mycolic acid desaturation in mycobacteria. Cooper C, Peterson EJR, Bailo R, Pan M, Singh A, Moynihan P, Nakaya M, Fujiwara N, Baliga N, Bhatt A. Proc Natl Acad Sci U S A 119 e2111059119 (2022)
  54. Nitrobenzoates and Nitrothiobenzoates with Activity against M. tuberculosis. Pais JP, Antoniuk O, Freire R, Pires D, Valente E, Anes E, Constantino L. Microorganisms 11 969 (2023)
  55. Synthesis, biological evaluation and molecular docking studies of 6-(4-nitrophenoxy)-1H-imidazo[4,5-b]pyridine derivatives as novel antitubercular agents: future DprE1 inhibitors. Gawad J, Bonde C. Chem Cent J 12 138 (2018)