4fmu Citations

Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2.

Abstract

Epigenetic regulation is involved in numerous physiological and pathogenic processes. Among the key regulators that orchestrate epigenetic signaling are over 50 human protein lysine methyltransferases (PKMTs). Interrogation of the functions of individual PKMTs can be facilitated by target-specific PKMT inhibitors. Given the emerging need for such small molecules, we envisioned an approach to identify target-specific methyltransferase inhibitors by screening privileged small-molecule scaffolds against diverse methyltransferases. In this work, we demonstrated the feasibility of such an approach by identifying the inhibitors of SETD2. N-propyl sinefungin (Pr-SNF) was shown to interact preferentially with SETD2 by matching the distinct transition-state features of SETD2's catalytically active conformer. With Pr-SNF as a structure probe, we further revealed the dual roles of SETD2's post-SET loop in regulating substrate access through a distinct topological reconfiguration. Privileged sinefungin scaffolds are expected to have broad use as structure and chemical probes of methyltransferases.

Reviews - 4fmu mentioned but not cited (3)

  1. Inhibitors of Protein Methyltransferases and Demethylases. Kaniskan HÜ, Martini ML, Jin J. Chem Rev 118 989-1068 (2018)
  2. Small molecule epigenetic inhibitors targeted to histone lysine methyltransferases and demethylases. Wang Z, Patel DJ. Q Rev Biophys 46 349-373 (2013)
  3. Lysine methyltransferase inhibitors: where we are now. Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. RSC Chem Biol 3 359-406 (2022)

Articles - 4fmu mentioned but not cited (6)

  1. Type II enteropathy-associated T-cell lymphoma features a unique genomic profile with highly recurrent SETD2 alterations. Roberti A, Dobay MP, Bisig B, Vallois D, Boéchat C, Lanitis E, Bouchindhomme B, Parrens MC, Bossard C, Quintanilla-Martinez L, Missiaglia E, Gaulard P, de Leval L. Nat Commun 7 12602 (2016)
  2. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Yang S, Zheng X, Lu C, Li GM, Allis CD, Li H. Genes Dev 30 1611-1616 (2016)
  3. Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. Zheng W, Ibáñez G, Wu H, Blum G, Zeng H, Dong A, Li F, Hajian T, Allali-Hassani A, Amaya MF, Siarheyeva A, Yu W, Brown PJ, Schapira M, Vedadi M, Min J, Luo M. J Am Chem Soc 134 18004-18014 (2012)
  4. Discovery of a Non-Nucleoside SETD2 Methyltransferase Inhibitor against Acute Myeloid Leukemia. Bajusz D, Bognár Z, Ebner J, Grebien F, Keserű GM. Int J Mol Sci 22 10055 (2021)
  5. The H-factor as a novel quality metric for homology modeling. di Luccio E, Koehl P. J Clin Bioinforma 2 18 (2012)
  6. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (20)

  1. SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases. Zhang J, Zheng YG. ACS Chem Biol 11 583-597 (2016)
  2. Chemical and Biochemical Perspectives of Protein Lysine Methylation. Luo M. Chem Rev 118 6656-6705 (2018)
  3. Small Molecule Inhibitors of Protein Arginine Methyltransferases. Hu H, Qian K, Ho MC, Zheng YG. Expert Opin Investig Drugs 25 335-358 (2016)
  4. Roles of H3K36-specific histone methyltransferases in transcription: antagonizing silencing and safeguarding transcription fidelity. Huang C, Zhu B. Biophys Rep 4 170-177 (2018)
  5. Molecular basis for substrate recognition by lysine methyltransferases and demethylases. Del Rizzo PA, Trievel RC. Biochim Biophys Acta 1839 1404-1415 (2014)
  6. Epigenetic targets and drug discovery: part 1: histone methylation. Liu Y, Liu K, Qin S, Xu C, Min J. Pharmacol Ther 143 275-294 (2014)
  7. Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond. Skucha A, Ebner J, Grebien F. Int J Mol Sci 20 E1029 (2019)
  8. H3K36 methyltransferases as cancer drug targets: rationale and perspectives for inhibitor development. Rogawski DS, Grembecka J, Cierpicki T. Future Med Chem 8 1589-1607 (2016)
  9. Tackling malignant melanoma epigenetically: histone lysine methylation. Orouji E, Utikal J. Clin Epigenetics 10 145 (2018)
  10. Combating the epigenome: epigenetic drugs against non-Hodgkin's lymphoma. Hassler MR, Schiefer AI, Egger G. Epigenomics 5 397-415 (2013)
  11. H3K36 trimethylation-mediated biological functions in cancer. Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. Clin Epigenetics 13 199 (2021)
  12. Inhibitors of protein methyltransferases as chemical tools. Luo M. Epigenomics 7 1327-1338 (2015)
  13. Recent progress in the discovery of small-molecule inhibitors of the HMT EZH2 for the treatment of cancer. Verma SK, Knight SD. Future Med Chem 5 1661-1670 (2013)
  14. Structural and functional specificity of H3K36 methylation. Lam UTF, Tan BKY, Poh JJX, Chen ES. Epigenetics Chromatin 15 17 (2022)
  15. Nature's combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces. Chen S, Kinney WA, Van Lanen S. World J Microbiol Biotechnol 33 66 (2017)
  16. Allosteric regulation of histone lysine methyltransferases: from context-specific regulation to selective drugs. Davidovich C, Zhang Q. Biochem Soc Trans 49 591-607 (2021)
  17. Structure, Activity, and Function of SETMAR Protein Lysine Methyltransferase. Tellier M. Life (Basel) 11 1342 (2021)
  18. NSD2 as a Promising Target in Hematological Disorders. Azagra A, Cobaleda C. Int J Mol Sci 23 11075 (2022)
  19. Chemical probes and methods for the study of protein arginine methylation. Brown T, Nguyen T, Zhou B, Zheng YG. RSC Chem Biol 4 647-669 (2023)
  20. Recent advances in developing degraders & inhibitors of lysine methyltransferases. Velez J, Kaniskan HÜ, Jin J. Curr Opin Chem Biol 76 102356 (2023)

Articles citing this publication (50)

  1. An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1. Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, Macnevin CJ, Liu F, Gao C, Huang XP, Kuznetsova E, Rougie M, Jiang A, Pattenden SG, Norris JL, James LI, Roth BL, Brown PJ, Frye SV, Arrowsmith CH, Hahn KM, Wang GG, Vedadi M, Jin J. ACS Chem Biol 8 1324-1334 (2013)
  2. Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Jiao L, Liu X. Science 350 aac4383 (2015)
  3. Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. Liu F, Barsyte-Lovejoy D, Li F, Xiong Y, Korboukh V, Huang XP, Allali-Hassani A, Janzen WP, Roth BL, Frye SV, Arrowsmith CH, Brown PJ, Vedadi M, Jin J. J Med Chem 56 8931-8942 (2013)
  4. Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. Wu H, Zeng H, Dong A, Li F, He H, Senisterra G, Seitova A, Duan S, Brown PJ, Vedadi M, Arrowsmith CH, Schapira M. PLoS One 8 e83737 (2013)
  5. Selective inhibitors of protein methyltransferases. Kaniskan HÜ, Konze KD, Jin J. J Med Chem 58 1596-1629 (2015)
  6. Trimethylation of histone H3 lysine 36 by human methyltransferase PRDM9 protein. Eram MS, Bustos SP, Lima-Fernandes E, Siarheyeva A, Senisterra G, Hajian T, Chau I, Duan S, Wu H, Dombrovski L, Schapira M, Arrowsmith CH, Vedadi M. J Biol Chem 289 12177-12188 (2014)
  7. Histone H3.3 phosphorylation amplifies stimulation-induced transcription. Armache A, Yang S, Martínez de Paz A, Robbins LE, Durmaz C, Cheong JQ, Ravishankar A, Daman AW, Ahimovic DJ, Klevorn T, Yue Y, Arslan T, Lin S, Panchenko T, Hrit J, Wang M, Thudium S, Garcia BA, Korb E, Armache KJ, Rothbart SB, Hake SB, Allis CD, Li H, Josefowicz SZ. Nature 583 852-857 (2020)
  8. Cancer-driving H3G34V/R/D mutations block H3K36 methylation and H3K36me3-MutSα interaction. Fang J, Huang Y, Mao G, Yang S, Rennert G, Gu L, Li H, Li GM. Proc Natl Acad Sci U S A 115 9598-9603 (2018)
  9. Chemical Proteomic Profiling of Human Methyltransferases. Horning BD, Suciu RM, Ghadiri DA, Ulanovskaya OA, Matthews ML, Lum KM, Backus KM, Brown SJ, Rosen H, Cravatt BF. J Am Chem Soc 138 13335-13343 (2016)
  10. Discovery of a selective, substrate-competitive inhibitor of the lysine methyltransferase SETD8. Ma A, Yu W, Li F, Bleich RM, Herold JM, Butler KV, Norris JL, Korboukh V, Tripathy A, Janzen WP, Arrowsmith CH, Frye SV, Vedadi M, Brown PJ, Jin J. J Med Chem 57 6822-6833 (2014)
  11. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation. Zhang Y, Shan CM, Wang J, Bao K, Tong L, Jia S. Sci Rep 7 43906 (2017)
  12. Methyltransferase-Glo: a universal, bioluminescent and homogenous assay for monitoring all classes of methyltransferases. Hsiao K, Zegzouti H, Goueli SA. Epigenomics 8 321-339 (2016)
  13. Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation. Hacker KE, Fahey CC, Shinsky SA, Chiang YJ, DiFiore JV, Jha DK, Vo AH, Shavit JA, Davis IJ, Strahl BD, Rathmell WK. J Biol Chem 291 21283-21295 (2016)
  14. Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. Liu F, Li F, Ma A, Dobrovetsky E, Dong A, Gao C, Korboukh I, Liu J, Smil D, Brown PJ, Frye SV, Arrowsmith CH, Schapira M, Vedadi M, Jin J. J Med Chem 56 2110-2124 (2013)
  15. Mrg15 stimulates Ash1 H3K36 methyltransferase activity and facilitates Ash1 Trithorax group protein function in Drosophila. Huang C, Yang F, Zhang Z, Zhang J, Cai G, Li L, Zheng Y, Chen S, Xi R, Zhu B. Nat Commun 8 1649 (2017)
  16. Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition. Froese DS, Kopec J, Rembeza E, Bezerra GA, Oberholzer AE, Suormala T, Lutz S, Chalk R, Borkowska O, Baumgartner MR, Yue WW. Nat Commun 9 2261 (2018)
  17. Transition state for the NSD2-catalyzed methylation of histone H3 lysine 36. Poulin MB, Schneck JL, Matico RE, McDevitt PJ, Huddleston MJ, Hou W, Johnson NW, Thrall SH, Meek TD, Schramm VL. Proc Natl Acad Sci U S A 113 1197-1201 (2016)
  18. The Human Mixed Lineage Leukemia 5 (MLL5), a Sequentially and Structurally Divergent SET Domain-Containing Protein with No Intrinsic Catalytic Activity. Mas-Y-Mas S, Barbon M, Teyssier C, Déméné H, Carvalho JE, Bird LE, Lebedev A, Fattori J, Schubert M, Dumas C, Bourguet W, le Maire A. PLoS One 11 e0165139 (2016)
  19. Analogues of the Natural Product Sinefungin as Inhibitors of EHMT1 and EHMT2. Devkota K, Lohse B, Liu Q, Wang MW, Stærk D, Berthelsen J, Clausen RP. ACS Med Chem Lett 5 293-297 (2014)
  20. Structural basis of arginine asymmetrical dimethylation by PRMT6. Wu H, Zheng W, Eram MS, Vhuiyan M, Dong A, Zeng H, He H, Brown P, Frankel A, Vedadi M, Luo M, Min J. Biochem J 473 3049-3063 (2016)
  21. Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2'-O-Methyltransferase. Mahalapbutr P, Kongtaworn N, Rungrotmongkol T. Comput Struct Biotechnol J 18 2757-2765 (2020)
  22. Structure-activity relationship studies of SETD8 inhibitors. Ma A, Yu W, Xiong Y, Butler KV, Brown PJ, Jin J. Medchemcomm 5 1892-1898 (2014)
  23. A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. Cai XC, Zhang T, Kim EJ, Jiang M, Wang K, Wang J, Chen S, Zhang N, Wu H, Li F, Dela Seña CC, Zeng H, Vivcharuk V, Niu X, Zheng W, Lee JP, Chen Y, Barsyte D, Szewczyk M, Hajian T, Ibáñez G, Dong A, Dombrovski L, Zhang Z, Deng H, Min J, Arrowsmith CH, Mazutis L, Shi L, Vedadi M, Brown PJ, Xiang J, Qin LX, Xu W, Luo M. Elife 8 e47110 (2019)
  24. Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents. Aldawsari FS, Aguayo-Ortiz R, Kapilashrami K, Yoo J, Luo M, Medina-Franco JL, Velázquez-Martínez CA. J Enzyme Inhib Med Chem 31 695-703 (2016)
  25. Exploring protein hotspots by optimized fragment pharmacophores. Bajusz D, Wade WS, Satała G, Bojarski AJ, Ilaš J, Ebner J, Grebien F, Papp H, Jakab F, Douangamath A, Fearon D, von Delft F, Schuller M, Ahel I, Wakefield A, Vajda S, Gerencsér J, Pallai P, Keserű GM. Nat Commun 12 3201 (2021)
  26. Kinetic isotope effects reveal early transition state of protein lysine methyltransferase SET8. Linscott JA, Kapilashrami K, Wang Z, Senevirathne C, Bothwell IR, Blum G, Luo M. Proc Natl Acad Sci U S A 113 E8369-E8378 (2016)
  27. Label-free measurement of histone lysine methyltransferases activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Guitot K, Scarabelli S, Drujon T, Bolbach G, Amoura M, Burlina F, Jeltsch A, Sagan S, Guianvarc'h D. Anal Biochem 456 25-31 (2014)
  28. S-adenosyl-homocysteine is a weakly bound inhibitor for a flaviviral methyltransferase. Chen H, Zhou B, Brecher M, Banavali N, Jones SA, Li Z, Zhang J, Nag D, Kramer LD, Ghosh AK, Li H. PLoS One 8 e76900 (2013)
  29. Dynamic behavior of the post-SET loop region of NSD1: Implications for histone binding and drug development. Graham SE, Tweedy SE, Carlson HA. Protein Sci 25 1021-1029 (2016)
  30. Two Loops Undergoing Concerted Dynamics Regulate the Activity of the ASH1L Histone Methyltransferase. Rogawski DS, Ndoj J, Cho HJ, Maillard I, Grembecka J, Cierpicki T. Biochemistry 54 5401-5413 (2015)
  31. Equatorial Active Site Compaction and Electrostatic Reorganization in Catechol-O-methyltransferase. Czarnota S, Johannissen LO, Baxter NJ, Rummel F, Wilson AL, Cliff MJ, Levy CW, Scrutton NS, Waltho JP, Hay S. ACS Catal 9 4394-4401 (2019)
  32. Kinetic Isotope Effects and Transition State Structure for Human Phenylethanolamine N-Methyltransferase. Stratton CF, Poulin MB, Du Q, Schramm VL. ACS Chem Biol 12 342-346 (2017)
  33. Sequence specificity analysis of the SETD2 protein lysine methyltransferase and discovery of a SETD2 super-substrate. Schuhmacher MK, Beldar S, Khella MS, Bröhm A, Ludwig J, Tempel W, Weirich S, Min J, Jeltsch A. Commun Biol 3 511 (2020)
  34. Genetic and immune profiling for potential therapeutic targets in adult human craniopharyngioma. Kassab C, Zamler D, Kamiya-Matsuoka C, Gatalica Z, Xiu J, Spetzler D, Heimberger AB. Clin Oncol Res 2 2-8 (2019)
  35. Molecular determinants for α-tubulin methylation by SETD2. Kearns S, Mason FM, Rathmell WK, Park IY, Walker C, Verhey KJ, Cianfrocco MA. J Biol Chem 297 100898 (2021)
  36. Analogs of S-Adenosyl-L-Methionine in Studies of Methyltransferases. Rudenko AY, Mariasina SS, Sergiev PV, Polshakov VI. Mol Biol 56 229-250 (2022)
  37. Detection of PRMT1 inhibitors with stopped flow fluorescence. Qian K, Hu H, Xu H, Zheng YG. Signal Transduct Target Ther 3 6 (2018)
  38. Development of Chemical Tools to Monitor and Control Isoaspartyl Peptide Methyltransferase Activity. Kimura Y, Komatsu T, Yanagi K, Hanaoka K, Ueno T, Terai T, Kojima H, Okabe T, Nagano T, Urano Y. Angew Chem Int Ed Engl 56 153-157 (2017)
  39. Discovery of a First-in-Class Inhibitor of the Histone Methyltransferase SETD2 Suitable for Preclinical Studies. Lampe JW, Alford JS, Boriak-Sjodin PA, Brach D, Cosmopoulos K, Duncan KW, Eckley ST, Foley MA, Harvey DM, Motwani V, Munchhof MJ, Raimondi A, Riera TV, Tang C, Thomenius MJ, Totman J, Farrow NA. ACS Med Chem Lett 12 1539-1545 (2021)
  40. A Pan-Inhibitor for Protein Arginine Methyltransferase Family Enzymes. Iyamu ID, Al-Hamashi AA, Huang R. Biomolecules 11 854 (2021)
  41. Factors affecting the persistence of drug-induced reprogramming of the cancer methylome. Bell JS, Kagey JD, Barwick BG, Dwivedi B, McCabe MT, Kowalski J, Vertino PM. Epigenetics 11 273-287 (2016)
  42. Identification and Inhibition of the Druggable Allosteric Site of SARS-CoV-2 NSP10/NSP16 Methyltransferase through Computational Approaches. Faisal S, Badshah SL, Kubra B, Sharaf M, Emwas AH, Jaremko M, Abdalla M. Molecules 27 5241 (2022)
  43. A high-throughput screen for the identification of compounds that inhibit nematode gene expression by targeting spliced leader trans-splicing. Pandarakalam GC, Speake M, McElroy S, Alturkistani A, Philippe L, Pettitt J, Müller B, Connolly B. Int J Parasitol Drugs Drug Resist 10 28-37 (2019)
  44. Discovery of Potent Small-Molecule Inhibitors of MLL Methyltransferase. Chern TR, Liu L, Petrunak E, Stuckey JA, Wang M, Bernard D, Zhou H, Lee S, Dou Y, Wang S. ACS Med Chem Lett 11 1348-1352 (2020)
  45. Distinct kinetic mechanisms of H3K4 methylation catalyzed by MLL3 and MLL4 core complexes. Zheng Y, Huang Y, Mencius J, Li Y, Zhao L, Luo W, Chen Y, Quan S. J Biol Chem 296 100635 (2021)
  46. Proteomic approaches for cancer epigenetics research. Marchione DM, Garcia BA, Wojcik J. Expert Rev Proteomics 16 33-47 (2019)
  47. Mechanistic basis of the increased methylation activity of the SETD2 protein lysine methyltransferase towards a designed super-substrate peptide. Schnee P, Choudalakis M, Weirich S, Khella MS, Carvalho H, Pleiss J, Jeltsch A. Commun Chem 5 139 (2022)
  48. Biochemical and structural characterization of the first-discovered metazoan DNA cytosine-N4 methyltransferase from the bdelloid rotifer Adineta vaga. Zhou J, Horton JR, Kaur G, Chen Q, Li X, Mendoza F, Wu T, Blumenthal RM, Zhang X, Cheng X. J Biol Chem 299 105017 (2023)
  49. Investigation of the inhibitors of histone-lysine N-methyltransferase SETD2 for acute lymphoblastic leukaemia from traditional Chinese medicine. Chang YL, Chen HY, Chen KB, Chen KC, Chang KL, Chang PC, Chang TT, Chen YC. SAR QSAR Environ Res 27 589-608 (2016)
  50. The crucial role of SETDB1 in structural and functional transformation of epithelial cells during regeneration after intestinal ischemia reperfusion injury. Ikenoue M, Choijookhuu N, Yano K, Fidya, Takahashi N, Ishizuka T, Shirouzu S, Yamaguma Y, Kai K, Higuchi K, Sawaguchi A, Nanashima A, Hishikawa Y. Histochem Cell Biol (2024)