4ga1 Citations

Crystal structure of the N-terminal domain of Nup358/RanBP2.

J Mol Biol 423 752-65 (2012)
Related entries: 4ga0, 4ga2

Cited: 23 times
EuropePMC logo PMID: 22959972

Abstract

Key steps in mRNA export are the nuclear assembly of messenger ribonucleoprotein particles (mRNPs), the translocation of mRNPs through the nuclear pore complex (NPC), and the mRNP remodeling events at the cytoplasmic side of the NPC. Nup358/RanBP2 is a constituent of the cytoplasmic filaments of the NPC specific to higher eukaryotes and provides a multitude of binding sites for the nucleocytoplasmic transport machinery. Here, we present the crystal structure of the Nup358 N-terminal domain (NTD) at 0.95Å resolution. The structure reveals an α-helical domain that harbors three central tetratricopeptide repeats (TPRs), flanked on each side by an additional solvating amphipathic α helix. Overall, the NTD adopts an unusual extended conformation that lacks the characteristic peptide-binding groove observed in canonical TPR domains. Strikingly, the vast majority of the NTD surface exhibits an evolutionarily conserved, positive electrostatic potential, and we demonstrate that the NTD possesses the capability to bind single-stranded RNA in solution. Together, these data suggest that the NTD contributes to mRNP remodeling events at the cytoplasmic face of the NPC.

Articles - 4ga1 mentioned but not cited (1)

  1. Crystal structure of the N-terminal domain of Nup358/RanBP2. Kassube SA, Stuwe T, Lin DH, Antonuk CD, Napetschnig J, Blobel G, Hoelz A. J. Mol. Biol. 423 752-765 (2012)


Reviews citing this publication (7)

Articles citing this publication (15)

  1. Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A. J. Mol. Biol. 425 1318-1329 (2013)
  2. RanBP2/Nup358 potentiates the translation of a subset of mRNAs encoding secretory proteins. Mahadevan K, Zhang H, Akef A, Cui XA, Gueroussov S, Cenik C, Roth FP, Palazzo AF. PLoS Biol. 11 e1001545 (2013)
  3. Down-modulation of nucleoporin RanBP2/Nup358 impaired chromosomal alignment and induced mitotic catastrophe. Hashizume C, Kobayashi A, Wong RW. Cell Death Dis 4 e854 (2013)
  4. Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Fontana P, Dong Y, Pi X, Tong AB, Hecksel CW, Wang L, Fu TM, Bustamante C, Wu H. Science 376 eabm9326 (2022)
  5. Evidence for an evolutionary relationship between the large adaptor nucleoporin Nup192 and karyopherins. Stuwe T, Lin DH, Collins LN, Hurt E, Hoelz A. Proc. Natl. Acad. Sci. U.S.A. 111 2530-2535 (2014)
  6. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1 • Nup98). Quan B, Seo HS, Blobel G, Ren Y. Proc. Natl. Acad. Sci. U.S.A. 111 9127-9132 (2014)
  7. Differential loss of prolyl isomerase or chaperone activity of Ran-binding protein 2 (Ranbp2) unveils distinct physiological roles of its cyclophilin domain in proteostasis. Cho KI, Patil H, Senda E, Wang J, Yi H, Qiu S, Yoon D, Yu M, Orry A, Peachey NS, Ferreira PA. J. Biol. Chem. 289 4600-4625 (2014)
  8. Architecture of the cytoplasmic face of the nuclear pore. Bley CJ, Nie S, Mobbs GW, Petrovic S, Gres AT, Liu X, Mukherjee S, Harvey S, Huber FM, Lin DH, Brown B, Tang AW, Rundlet EJ, Correia AR, Chen S, Regmi SG, Stevens TA, Jette CA, Dasso M, Patke A, Palazzo AF, Kossiakoff AA, Hoelz A. Science 376 eabm9129 (2022)
  9. Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex by cryo-electron microscopy single particle analysis. Huang G, Zhang Y, Zhu X, Zeng C, Wang Q, Zhou Q, Tao Q, Liu M, Lei J, Yan C, Shi Y. Cell Res 30 520-531 (2020)
  10. Identification of a Nucleoporin358-Specific RNA Aptamer for Use as a Nucleus-Targeting Liposomal Delivery System. Shrivastava G, Hyodo M, Yoshimura SH, Akita H, Harashima H. Nucleic Acid Ther 26 286-298 (2016)
  11. 8 Å structure of the outer rings of the Xenopus laevis nuclear pore complex obtained by cryo-EM and AI. Tai L, Zhu Y, Ren H, Huang X, Zhang C, Sun F. Protein Cell (2022)
  12. Evolutionary divergence of the nuclear pore complex from fungi to metazoans. Chopra K, Bawaria S, Chauhan R. Protein Sci. 28 571-586 (2019)
  13. GCN5L1 interacts with αTAT1 and RanBP2 to regulate hepatic α-tubulin acetylation and lysosome trafficking. Wu K, Wang L, Chen Y, Pirooznia M, Singh K, Wälde S, Kehlenbach RH, Scott I, Gucek M, Sack MN. J. Cell. Sci. 131 (2018)
  14. The Structure of the Nuclear Pore Complex (An Update). Lin DH, Hoelz A. Annu. Rev. Biochem. 88 725-783 (2019)
  15. Workshop on RanBP2/Nup358 and acute necrotizing encephalopathy. Palazzo AF, Joseph J, Lim M, Thakur KT. Nucleus 13 154-169 (2022)