4i2z Citations

The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans.

Abstract

The UCS (UNC-45/CRO1/She4) chaperones play an evolutionarily conserved role in promoting myosin-dependent processes, including cytokinesis, endocytosis, RNA transport, and muscle development. To investigate the protein machinery orchestrating myosin folding and assembly, we performed a comprehensive analysis of Caenorhabditis elegans UNC-45. Our structural and biochemical data demonstrate that UNC-45 forms linear protein chains that offer multiple binding sites for cooperating chaperones and client proteins. Accordingly, Hsp70 and Hsp90, which bind to the TPR domain of UNC-45, could act in concert and with defined periodicity on captured myosin molecules. In vivo analyses reveal the elongated canyon of the UCS domain as a myosin-binding site and show that multimeric UNC-45 chains support organization of sarcomeric repeats. In fact, expression of transgenes blocking UNC-45 chain formation induces dominant-negative defects in the sarcomere structure and function of wild-type worms. Together, these findings uncover a filament assembly factor that directly couples myosin folding with myofilament formation.

Reviews - 4i2z mentioned but not cited (2)

  1. The UNC-45 myosin chaperone: from worms to flies to vertebrates. Lee CF, Melkani GC, Bernstein SI. Int Rev Cell Mol Biol 313 103-144 (2014)
  2. Myosin chaperones. Hellerschmied D, Clausen T. Curr. Opin. Struct. Biol. 25 9-15 (2014)

Articles - 4i2z mentioned but not cited (7)

  1. In Vivo Hydroxyl Radical Protein Footprinting for the Study of Protein Interactions in Caenorhabditis elegans. Espino JA, Jones LM. J Vis Exp (2020)
  2. Mutations in conserved residues of the myosin chaperone UNC-45 result in both reduced stability and chaperoning activity. Moncrief T, Matheny CJ, Gaziova I, Miller JM, Qadota H, Benian GM, Oberhauser AF. Protein Sci 30 2221-2232 (2021)
  3. UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins. Hellerschmied D, Roessler M, Lehner A, Gazda L, Stejskal K, Imre R, Mechtler K, Dammermann A, Clausen T. Nat Commun 9 484 (2018)
  4. UNC45A deficiency causes microvillus inclusion disease-like phenotype by impairing myosin VB-dependent apical trafficking. Duclaux-Loras R, Lebreton C, Berthelet J, Charbit-Henrion F, Nicolle O, Revenu de Courtils C, Waich S, Valovka T, Khiat A, Rabant M, Racine C, Guerrera IC, Baptista J, Mahe MM, Hess MW, Durel B, Lefort N, Banal C, Parisot M, Talbotec C, Lacaille F, Ecochard-Dugelay E, Demir AM, Vogel GF, Faivre L, Rodrigues A, Fowler D, Janecke AR, Müller T, Huber LA, Rodrigues-Lima F, Ruemmele FM, Uhlig HH, Del Bene F, Michaux G, Cerf-Bensussan N, Parlato M. J Clin Invest 132 e154997 (2022)
  5. Illuminating Biological Interactions with in Vivo Protein Footprinting. Espino JA, Jones LM. Anal. Chem. 91 6577-6584 (2019)
  6. Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin. Hellerschmied D, Lehner A, Franicevic N, Arnese R, Johnson C, Vogel A, Meinhart A, Kurzbauer R, Deszcz L, Gazda L, Geeves M, Clausen T. Nat Commun 10 4781 (2019)
  7. Pathogenic Variants in the Myosin Chaperone UNC-45B Cause Progressive Myopathy with Eccentric Cores. Donkervoort S, Kutzner CE, Hu Y, Lornage X, Rendu J, Stojkovic T, Baets J, Neuhaus SB, Tanboon J, Maroofian R, Bolduc V, Mroczek M, Conijn S, Kuntz NL, Töpf A, Monges S, Lubieniecki F, McCarty RM, Chao KR, Governali S, Böhm J, Boonyapisit K, Malfatti E, Sangruchi T, Horkayne-Szakaly I, Hedberg-Oldfors C, Efthymiou S, Noguchi S, Djeddi S, Iida A, di Rosa G, Fiorillo C, Salpietro V, Darin N, Fauré J, Houlden H, Oldfors A, Nishino I, de Ridder W, Straub V, Pokrzywa W, Laporte J, Foley AR, Romero NB, Ottenheijm C, Hoppe T, Bönnemann CG. Am J Hum Genet 107 1078-1095 (2020)


Reviews citing this publication (9)

  1. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Du SJ, Tan X, Zhang J. Anat Rec (Hoboken) 297 1650-1662 (2014)
  2. Getting folded: chaperone proteins in muscle development, maintenance and disease. Smith DA, Carland CR, Guo Y, Bernstein SI. Anat Rec (Hoboken) 297 1637-1649 (2014)
  3. Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. Martin TG, Kirk JA. J Mol Cell Cardiol 148 89-102 (2020)
  4. Life without double-headed non-muscle myosin II motor proteins. Betapudi V. Front Chem 2 45 (2014)
  5. Maintaining proteostasis under mechanical stress. Höhfeld J, Benzing T, Bloch W, Fürst DO, Gehlert S, Hesse M, Hoffmann B, Hoppe T, Huesgen PF, Köhn M, Kolanus W, Merkel R, Niessen CM, Pokrzywa W, Rinschen MM, Wachten D, Warscheid B. EMBO Rep 22 e52507 (2021)
  6. Myosin: Formation and maintenance of thick filaments. Ojima K. Anim. Sci. J. 90 801-807 (2019)
  7. Protein Quality Control at the Sarcomere: Titin Protection and Turnover and Implications for Disease Development. Kötter S, Krüger M. Front Physiol 13 914296 (2022)
  8. UCS Chaperone Folding of the Myosin Head: A Function That Evolved before Animals and Fungi Diverged from a Common Ancestor More than a Billion Years Ago. Piper PW, Scott JE, Millson SH. Biomolecules 12 1028 (2022)
  9. Unconventional Myosins from Caenorhabditis elegans as a Probe to Study Human Orthologues. Johnson CA, Behbehani R, Buss F. Biomolecules 12 1889 (2022)

Articles citing this publication (44)

  1. The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. Tawo R, Pokrzywa W, Kevei É, Akyuz ME, Balaji V, Adrian S, Höhfeld J, Hoppe T. Cell 169 470-482.e13 (2017)
  2. Adducin-1 is essential for mitotic spindle assembly through its interaction with myosin-X. Chan PC, Hsu RY, Liu CW, Lai CC, Chen HC. J. Cell Biol. 204 19-28 (2014)
  3. The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish. Myhre JL, Hills JA, Prill K, Wohlgemuth SL, Pilgrim DB. Dev. Biol. 387 93-108 (2014)
  4. A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility. Bookwalter CS, Kelsen A, Leung JM, Ward GE, Trybus KM. J. Biol. Chem. 289 30832-30841 (2014)
  5. A G protein-coupled receptor and the intracellular synthase of its agonist functionally cooperate. Binda C, Génier S, Cartier A, Larrivée JF, Stankova J, Young JC, Parent JL. J. Cell Biol. 204 377-393 (2014)
  6. Chaperones: needed for both the good times and the bad times. Quinlan RA, Ellis RJ. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368 20130091 (2013)
  7. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Etard C, Armant O, Roostalu U, Gourain V, Ferg M, Strähle U. Genome Biol. 16 267 (2015)
  8. UNC-45B chaperone: the role of its domains in the interaction with the myosin motor domain. Bujalowski PJ, Nicholls P, Oberhauser AF. Biophys. J. 107 654-661 (2014)
  9. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins. Tripathi A, Mandon EC, Gilmore R, Rapoport TA. J. Biol. Chem. 292 8007-8018 (2017)
  10. A Differentiation Transcription Factor Establishes Muscle-Specific Proteostasis in Caenorhabditis elegans. Bar-Lavan Y, Shemesh N, Dror S, Ofir R, Yeger-Lotem E, Ben-Zvi A. PLoS Genet. 12 e1006531 (2016)
  11. The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Hansen L, Comyn S, Mang Y, Lind-Thomsen A, Myhre L, Jean F, Eiberg H, Tommerup N, Rosenberg T, Pilgrim D. Eur. J. Hum. Genet. 22 1290-1297 (2014)
  12. UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast. Stark BC, James ML, Pollard LW, Sirotkin V, Lord M. PLoS ONE 8 e79593 (2013)
  13. A Remodeled Hsp90 Molecular Chaperone Ensemble with the Novel Cochaperone Aarsd1 Is Required for Muscle Differentiation. Echeverría PC, Briand PA, Picard D. Mol. Cell. Biol. 36 1310-1321 (2016)
  14. Challenging muscle homeostasis uncovers novel chaperone interactions in Caenorhabditis elegans. Frumkin A, Dror S, Pokrzywa W, Bar-Lavan Y, Karady I, Hoppe T, Ben-Zvi A. Front Mol Biosci 1 21 (2014)
  15. Crossfinder-assisted mapping of protein crosslinks formed by site-specifically incorporated crosslinkers. Mueller-Planitz F. Bioinformatics 31 2043-2045 (2015)
  16. Structural and functional dissection of Toxoplasma gondii armadillo repeats only protein. Mueller C, Samoo A, Hammoudi PM, Klages N, Kallio JP, Kursula I, Soldati-Favre D. J. Cell. Sci. 129 1031-1045 (2016)
  17. UNC-45a promotes myosin folding and stress fiber assembly. Lehtimäki JI, Fenix AM, Kotila TM, Balistreri G, Paavolainen L, Varjosalo M, Burnette DT, Lappalainen P. J. Cell Biol. 216 4053-4072 (2017)
  18. Dynamics of myosin replacement in skeletal muscle cells. Ojima K, Ichimura E, Yasukawa Y, Wakamatsu J, Nishimura T. Am. J. Physiol., Cell Physiol. 309 C669-79 (2015)
  19. Muscle-derived exophers promote reproductive fitness. Turek M, Banasiak K, Piechota M, Shanmugam N, Macias M, Śliwińska MA, Niklewicz M, Kowalski K, Nowak N, Chacinska A, Pokrzywa W. EMBO Rep 22 e52071 (2021)
  20. PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System. Heath JE, Seers CA, Veith PD, Butler CA, Nor Muhammad NA, Chen YY, Slakeski N, Peng B, Zhang L, Dashper SG, Cross KJ, Cleal SM, Moore C, Reynolds EC. PLoS ONE 11 e0164313 (2016)
  21. Chaperone-mediated reversible inhibition of the sarcomeric myosin power stroke. Nicholls P, Bujalowski PJ, Epstein HF, Boehning DF, Barral JM, Oberhauser AF. FEBS Lett. 588 3977-3981 (2014)
  22. The co-chaperone UNC45A is essential for the expression of mitotic kinase NEK7 and tumorigenesis. Eisa NH, Jilani Y, Kainth K, Redd P, Lu S, Bougrine O, Abdul Sater H, Patwardhan CA, Shull A, Shi H, Liu K, Elsherbiny NM, Eissa LA, El-Shishtawy MM, Horuzsko A, Bollag R, Maihle N, Roig J, Korkaya H, Cowell JK, Chadli A. J Biol Chem 294 5246-5260 (2019)
  23. The crystal structure of the Sgt1-Skp1 complex: the link between Hsp90 and both SCF E3 ubiquitin ligases and kinetochores. Willhoft O, Kerr R, Patel D, Zhang W, Al-Jassar C, Daviter T, Millson SH, Thalassinos K, Vaughan CK. Sci Rep 7 41626 (2017)
  24. Chaperoning myosin assembly in muscle formation and aging. Pokrzywa W, Hoppe T. Worm 2 e25644 (2013)
  25. Myosin substitution rate is affected by the amount of cytosolic myosin in cultured muscle cells. Ojima K, Ichimura E, Yasukawa Y, Oe M, Muroya S, Suzuki T, Wakamatsu JI, Nishimura T. Anim. Sci. J. 88 1788-1793 (2017)
  26. Thermally-induced structural changes in an armadillo repeat protein suggest a novel thermosensor mechanism in a molecular chaperone. Bujalowski PJ, Nicholls P, Barral JM, Oberhauser AF. FEBS Lett. 589 123-130 (2015)
  27. A heterotypic assembly mechanism regulates CHIP E3 ligase activity. Das A, Thapa P, Santiago U, Shanmugam N, Banasiak K, Dąbrowska K, Nolte H, Szulc NA, Gathungu RM, Cysewski D, Krüger M, Dadlez M, Nowotny M, Camacho CJ, Hoppe T, Pokrzywa W. EMBO J 41 e109566 (2022)
  28. Cloning, molecular characterization, and expression analysis of the unc45 myosin chaperone b(unc45b)gene of grass carp (Ctenopharyngodon idellus). Hu J, Guo T, Pan WQ, Gan T, Wei J, Wang JP, Leng XJ, Li XQ. J. Muscle Res. Cell. Motil. 37 71-81 (2016)
  29. Drosophila as a potential model to ameliorate mutant Huntington-mediated cardiac amyloidosis. Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K, Melkani GC. Rare Dis 2 e968003 (2014)
  30. HSP90 modulates the myosin replacement rate in myofibrils. Ojima K, Ichimura E, Suzuki T, Oe M, Muroya S, Nishimura T. Am. J. Physiol., Cell Physiol. 315 C104-C114 (2018)
  31. Mutation of the Ser18 phosphorylation site on the sole Saccharomyces cerevisiae UCS protein, She4, can compromise high-temperature survival. Gomez-Escalante S, Piper PW, Millson SH. Cell Stress Chaperones 22 135-141 (2017)
  32. Mutational Analysis of the Structure and Function of the Chaperoning Domain of UNC-45B. Gaziova I, Moncrief T, Christian CJ, Villarreal M, Powell S, Lee H, Qadota H, White MA, Benian GM, Oberhauser AF. Biophys J 119 780-791 (2020)
  33. Structural and regulatory insights into the glideosome-associated connector from Toxoplasma gondii. Kumar A, Vadas O, Dos Santos Pacheco N, Zhang X, Chao K, Darvill N, Rasmussen HØ, Xu Y, Lin GM, Stylianou FA, Pedersen JS, Rouse SL, Morgan ML, Soldati-Favre D, Matthews S. Elife 12 e86049 (2023)
  34. A Functional Relationship Between UNC45A and MYO5B Connects Two Rare Diseases With Shared Enteropathy. Li Q, Zhou Z, Sun Y, Sun C, Klappe K, van IJzendoorn SCD. Cell Mol Gastroenterol Hepatol 14 295-310 (2022)
  35. A myosin chaperone, UNC-45A, is a novel regulator of intestinal epithelial barrier integrity and repair. Lechuga S, Cartagena-Rivera AX, Khan A, Crawford BI, Narayanan V, Conway DE, Lehtimäki J, Lappalainen P, Rieder F, Longworth MS, Ivanov AI. FASEB J 36 e22290 (2022)
  36. A ubiquitin fusion reporter to monitor muscle proteostasis in C. elegans. Kutzner CE, Bauer KC, Hoppe T. MicroPubl Biol 2023 (2023)
  37. Loss of function variants in DNAJB4 cause a myopathy with early respiratory failure. Weihl CC, Töpf A, Bengoechea R, Duff J, Charlton R, Garcia SK, Domínguez-González C, Alsaman A, Hernández-Laín A, Franco LV, Sanchez MEP, Beecroft SJ, Goullee H, Daw J, Bhadra A, True H, Inoue M, Findlay AR, Laing N, Olivé M, Ravenscroft G, Straub V. Acta Neuropathol 145 127-143 (2023)
  38. The E3/E4 ubiquitin ligase UFD-2 suppresses normal and oncogenic signaling mediated by a Raf ortholog in Caenorhabditis elegans. Townley R, Deniaud A, Stacy KS, Rodriguez Torres CS, Cheraghi F, Wicker NB, de la Cova CC. Sci Signal 16 eabq4355 (2023)
  39. The central domain of UNC-45 chaperone inhibits the myosin power stroke. Bujalowski PJ, Nicholls P, Garza E, Oberhauser AF. FEBS Open Bio 8 41-48 (2018)
  40. The microtubule-severing protein UNC-45A preferentially binds to curved microtubules and counteracts the microtubule-straightening effects of Taxol. Hoshino A, Clemente V, Shetty M, Castle B, Odde D, Bazzaro M. J Biol Chem 299 105355 (2023)
  41. UCS protein function is partially restored in the Saccharomyces cerevisiae she4 mutant with expression of the human UNC45-GC, but not UNC45-SM. Escalante SG, Brightmore JA, Piper PW, Millson SH. Cell Stress Chaperones 23 609-615 (2018)
  42. UNC-45A breaks the microtubule lattice independently of its effects on non-muscle myosin II. Habicht J, Mooneyham A, Hoshino A, Shetty M, Zhang X, Emmings E, Yang Q, Coombes C, Gardner MK, Bazzaro M. J Cell Sci 134 (2021)
  43. UNC-45A is preferentially expressed in epithelial cells and binds to and co-localizes with interphase MTs. Habicht J, Mooneyham A, Shetty M, Zhang X, Shridhar V, Winterhoff B, Zhang Y, Cepela J, Starr T, Lou E, Bazzaro M. Cancer Biol. Ther. 20 1304-1313 (2019)
  44. UNC-45a helps cells manage their stress levels. Short B. J Cell Biol 216 3887 (2017)