4i5c Citations

Novel triazolo-pyrrolopyridines as inhibitors of Janus kinase 1.

Abstract

The identification of a novel fused triazolo-pyrrolopyridine scaffold, optimized derivatives of which display nanomolar inhibition of Janus kinase 1, is described. Prototypical example 3 demonstrated lower cell potency shift, better permeability in cells and higher oral exposure in rat than the corresponding, previously reported, imidazo-pyrrolopyridine analogue 2. Examples 6, 7 and 18 were subsequently identified from an optimization campaign and demonstrated modest selectivity over JAK2, moderate to good oral bioavailability in rat with overall pharmacokinetic profiles comparable to that reported for an approved pan-JAK inhibitor (tofacitinib).

Articles - 4i5c mentioned but not cited (2)

  1. Design, Synthesis and Structure-Activity Relationship Studies of Meridianin Derivatives as Novel JAK/STAT3 Signaling Inhibitors. Zhang JQ, Li R, Dong XY, He N, Yin RJ, Yang MK, Liu JY, Yu RL, Zhao CY, Jiang T. Int J Mol Sci 23 2199 (2022)
  2. Application of Sequential Palladium Catalysis for the Discovery of Janus Kinase Inhibitors in the Benzo[ c]pyrrolo[2,3- h][1,6]naphthyridin-5-one (BPN) Series. Elsayed MSA, Nielsen JJ, Park S, Park J, Liu Q, Kim CH, Pommier Y, Agama K, Low PS, Cushman M. J Med Chem 61 10440-10462 (2018)


Reviews citing this publication (4)

  1. Selective JAK inhibitors in development for rheumatoid arthritis. Norman P. Expert Opin Investig Drugs 23 1067-1077 (2014)
  2. An Update on JAK Inhibitors. Musumeci F, Greco C, Giacchello I, Fallacara AL, Ibrahim MM, Grossi G, Brullo C, Schenone S. Curr Med Chem 26 1806-1832 (2019)
  3. Selective JAK inhibitors. Dymock BW, Yang EG, Chu-Farseeva Y, Yao L. Future Med Chem 6 1439-1471 (2014)
  4. Progress toward JAK1-selective inhibitors. Menet CJ, Mammoliti O, López-Ramos M. Future Med Chem 7 203-235 (2015)

Articles citing this publication (7)

  1. Synthesis and evaluation of anti-tubercular activity of 6-(4-substitutedpiperazin-1-yl) phenanthridine analogues. Nagesh HN, Suresh N, Mahalakshmi Naidu K, Arun B, Padma Sridevi J, Sriram D, Yogeeswari P, Chandra Sekhar KV. Eur J Med Chem 74 333-339 (2014)
  2. Scaffold hopping towards potent and selective JAK3 inhibitors: discovery of novel C-5 substituted pyrrolopyrazines. de Vicente J, Lemoine R, Bartlett M, Hermann JC, Hekmat-Nejad M, Henningsen R, Jin S, Kuglstatter A, Li H, Lovey AJ, Menke J, Niu L, Patel V, Petersen A, Setti L, Shao A, Tivitmahaisoon P, Vu MD, Soth M. Bioorg Med Chem Lett 24 4969-4975 (2014)
  3. Anilino-monoindolylmaleimides as potent and selective JAK3 inhibitors. McDonnell ME, Bian H, Wrobel J, Smith GR, Liang S, Ma H, Reitz AB. Bioorg Med Chem Lett 24 1116-1121 (2014)
  4. Identification of Potent and Selective JAK1 Lead Compounds Through Ligand-Based Drug Design Approaches. Babu S, Nagarajan SK, Sathish S, Negi VS, Sohn H, Madhavan T. Front Pharmacol 13 837369 (2022)
  5. Molecular modeling-driven approach for identification of Janus kinase 1 inhibitors through 3D-QSAR, docking and molecular dynamics simulations. Itteboina R, Ballu S, Sivan SK, Manga V. J Recept Signal Transduct Res 37 453-469 (2017)
  6. Ensemble docking-based virtual screening yields novel spirocyclic JAK1 inhibitors. Bajusz D, Ferenczy GG, Keserű GM. J Mol Graph Model 70 275-283 (2016)
  7. Artocarpus altilis CG-901 alters critical nodes in the JH1-kinase domain of Janus kinase 2 affecting upstream JAK/STAT3 signaling. Nash O, Omotuyi O, Lee J, Kwon BM, Ogbadu L. J Mol Model 21 280 (2015)