4k50 Citations

Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts.

OpenAccess logo PLoS One 8 e60272 (2013)
Related entries: 4k4s, 4k4t, 4k4u, 4k4v, 4k4w, 4k4x, 4k4y, 4k4z

Cited: 52 times
EuropePMC logo PMID: 23667424

Abstract

RNA-dependent RNA polymerases play a vital role in the growth of RNA viruses where they are responsible for genome replication, but do so with rather low fidelity that allows for the rapid adaptation to different host cell environments. These polymerases are also a target for antiviral drug development. However, both drug discovery efforts and our understanding of fidelity determinants have been hampered by a lack of detailed structural information about functional polymerase-RNA complexes and the structural changes that take place during the elongation cycle. Many of the molecular details associated with nucleotide selection and catalysis were revealed in our recent structure of the poliovirus polymerase-RNA complex solved by first purifying and then crystallizing stalled elongation complexes. In the work presented here we extend that basic methodology to determine nine new structures of poliovirus, coxsackievirus, and rhinovirus elongation complexes at 2.2-2.9 Å resolution. The structures highlight conserved features of picornaviral polymerases and the interactions they make with the template and product RNA strands, including a tight grip on eight basepairs of the nascent duplex, a fully pre-positioned templating nucleotide, and a conserved binding pocket for the +2 position template strand base. At the active site we see a pre-bound magnesium ion and there is conservation of a non-standard backbone conformation of the template strand in an interaction that may aid in triggering RNA translocation via contact with the conserved polymerase motif B. Moreover, by engineering plasticity into RNA-RNA contacts, we obtain crystal forms that are capable of multiple rounds of in-crystal catalysis and RNA translocation. Together, the data demonstrate that engineering flexible RNA contacts to promote crystal lattice formation is a versatile platform that can be used to solve the structures of viral RdRP elongation complexes and their catalytic cycle intermediates.

Reviews - 4k50 mentioned but not cited (3)

Articles - 4k50 mentioned but not cited (5)

  1. Structures of coxsackievirus, rhinovirus, and poliovirus polymerase elongation complexes solved by engineering RNA mediated crystal contacts. Gong P, Kortus MG, Nix JC, Davis RE, Peersen OB. PLoS One 8 e60272 (2013)
  2. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs. Chawla M, Chermak E, Zhang Q, Bujnicki JM, Oliva R, Cavallo L. Nucleic Acids Res 45 11019-11032 (2017)
  3. A nucleobase-binding pocket in a viral RNA-dependent RNA polymerase contributes to elongation complex stability. Shi W, Ye HQ, Deng CL, Li R, Zhang B, Gong P. Nucleic Acids Res 48 1392-1405 (2020)
  4. Picornavirus RNA Recombination Counteracts Error Catastrophe. Kempf BJ, Watkins CL, Peersen OB, Barton DJ. J Virol 93 e00652-19 (2019)
  5. PAP8/pTAC6 Is Part of a Nuclear Protein Complex and Displays RNA Recognition Motifs of Viral Origin. Chambon L, Gillet FX, Chieb M, Cobessi D, Pfannschmidt T, Blanvillain R. Int J Mol Sci 23 3059 (2022)


Reviews citing this publication (8)

  1. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Venkataraman S, Prasad BVLS, Selvarajan R. Viruses 10 E76 (2018)
  2. Common and unique features of viral RNA-dependent polymerases. te Velthuis AJ. Cell Mol Life Sci 71 4403-4420 (2014)
  3. A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family. Wu J, Liu W, Gong P. Int J Mol Sci 16 12943-12957 (2015)
  4. Dengue Virus Non-Structural Protein 5. El Sahili A, Lescar J. Viruses 9 E91 (2017)
  5. RNA-Dependent RNA Polymerases of Picornaviruses: From the Structure to Regulatory Mechanisms. Ferrer-Orta C, Ferrero D, Verdaguer N. Viruses 7 4438-4460 (2015)
  6. A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus. Lu G, Gong P. Virus Res 234 34-43 (2017)
  7. Fidelity of Nucleotide Incorporation by the RNA-Dependent RNA Polymerase from Poliovirus. Cameron CE, Moustafa IM, Arnold JJ. Enzymes 39 293-323 (2016)
  8. Structural Biology of the Enterovirus Replication-Linked 5'-Cloverleaf RNA and Associated Virus Proteins. Pascal SM, Garimella R, Warden MS, Ponniah K. Microbiol Mol Biol Rev 84 e00062-19 (2020)

Articles citing this publication (36)

  1. Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Shannon A, Le NT, Selisko B, Eydoux C, Alvarez K, Guillemot JC, Decroly E, Peersen O, Ferron F, Canard B. Antiviral Res 178 104793 (2020)
  2. Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. Lu G, Gong P. PLoS Pathog 9 e1003549 (2013)
  3. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. Olspert A, Chung BY, Atkins JF, Carr JP, Firth AE. EMBO Rep 16 995-1004 (2015)
  4. Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Shu B, Gong P. Proc Natl Acad Sci U S A 113 E4005-14 (2016)
  5. Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases. Campagnola G, McDonald S, Beaucourt S, Vignuzzi M, Peersen OB. J Virol 89 275-286 (2015)
  6. Distinct conformations of a putative translocation element in poliovirus polymerase. Sholders AJ, Peersen OB. J Mol Biol 426 1407-1419 (2014)
  7. Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo. McDonald S, Block A, Beaucourt S, Moratorio G, Vignuzzi M, Peersen OB. J Biol Chem 291 13999-14011 (2016)
  8. Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity. Rai DK, Diaz-San Segundo F, Campagnola G, Keith A, Schafer EA, Kloc A, de Los Santos T, Peersen O, Rieder E. J Virol 91 e00081-17 (2017)
  9. Perturbation in the conserved methyltransferase-polymerase interface of flavivirus NS5 differentially affects polymerase initiation and elongation. Wu J, Lu G, Zhang B, Gong P. J Virol 89 249-261 (2015)
  10. Inhibition of enterovirus 71 by adenosine analog NITD008. Deng CL, Yeo H, Ye HQ, Liu SQ, Shang BD, Gong P, Alonso S, Shi PY, Zhang B. J Virol 88 11915-11923 (2014)
  11. Chikungunya virus nsP4 RNA-dependent RNA polymerase core domain displays detergent-sensitive primer extension and terminal adenylyltransferase activities. Chen MW, Tan YB, Zheng J, Zhao Y, Lim BT, Cornvik T, Lescar J, Ng LFP, Luo D. Antiviral Res 143 38-47 (2017)
  12. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance. Kempf BJ, Peersen OB, Barton DJ. J Virol 90 8410-8421 (2016)
  13. Stringent control of the RNA-dependent RNA polymerase translocation revealed by multiple intermediate structures. Wang M, Li R, Shu B, Jing X, Ye HQ, Gong P. Nat Commun 11 2605 (2020)
  14. The crystal structure of a cardiovirus RNA-dependent RNA polymerase reveals an unusual conformation of the polymerase active site. Vives-Adrian L, Lujan C, Oliva B, van der Linden L, Selisko B, Coutard B, Canard B, van Kuppeveld FJ, Ferrer-Orta C, Verdaguer N. J Virol 88 5595-5607 (2014)
  15. Multifunctionality of a picornavirus polymerase domain: nuclear localization signal and nucleotide recognition. Ferrer-Orta C, de la Higuera I, Caridi F, Sánchez-Aparicio MT, Moreno E, Perales C, Singh K, Sarafianos SG, Sobrino F, Domingo E, Verdaguer N. J Virol 89 6848-6859 (2015)
  16. Biochemical characterization of recombinant Enterovirus 71 3C protease with fluorogenic model peptide substrates and development of a biochemical assay. Shang L, Zhang S, Yang X, Sun J, Li L, Cui Z, He Q, Guo Y, Sun Y, Yin Z. Antimicrob Agents Chemother 59 1827-1836 (2015)
  17. Negative charge and membrane-tethered viral 3B cooperate to recruit viral RNA dependent RNA polymerase 3D pol. Dubankova A, Humpolickova J, Klima M, Boura E. Sci Rep 7 17309 (2017)
  18. Remdesivir overcomes the S861 roadblock in SARS-CoV-2 polymerase elongation complex. Wu J, Wang H, Liu Q, Li R, Gao Y, Fang X, Zhong Y, Wang M, Wang Q, Rao Z, Gong P. Cell Rep 37 109882 (2021)
  19. Structure of a backtracked state reveals conformational changes similar to the state following nucleotide incorporation in human norovirus polymerase. Zamyatkin D, Rao C, Hoffarth E, Jurca G, Rho H, Parra F, Grochulski P, Ng KK. Acta Crystallogr D Biol Crystallogr 70 3099-3109 (2014)
  20. Triphosphate Reorientation of the Incoming Nucleotide as a Fidelity Checkpoint in Viral RNA-dependent RNA Polymerases. Yang X, Liu X, Musser DM, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. J Biol Chem 292 3810-3826 (2017)
  21. Rational Control of Poliovirus RNA-Dependent RNA Polymerase Fidelity by Modulating Motif-D Loop Conformational Dynamics. Shi J, Perryman JM, Yang X, Liu X, Musser DM, Boehr AK, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Biochemistry 58 3735-3743 (2019)
  22. 2'-C-methylated nucleotides terminate virus RNA synthesis by preventing active site closure of the viral RNA-dependent RNA polymerase. Boehr AK, Arnold JJ, Oh HS, Cameron CE, Boehr DD. J Biol Chem 294 16897-16907 (2019)
  23. Binding of boswellic acids to functional proteins of the SARS-CoV-2 virus: Bioinformatic studies. Caliebe RH, Scior T, Ammon HPT. Arch Pharm (Weinheim) 354 e2100160 (2021)
  24. The Picornavirus Precursor 3CD Has Different Conformational Dynamics Compared to 3Cpro and 3Dpol in Functionally Relevant Regions. Winston DS, Boehr DD. Viruses 13 442 (2021)
  25. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3. Zheng F, Lu G, Li L, Gong P, Pan Z. J Virol 91 e01094-17 (2017)
  26. Crystal Structure and Thermostability Characterization of Enterovirus D68 3Dpol. Wang C, Wang C, Li Q, Wang Z, Xie W. J Virol 91 e00876-17 (2017)
  27. Letter Crystal structure of the coxsackievirus A16 RNA-dependent RNA polymerase elongation complex reveals novel features in motif A dynamics. Bi P, Shu B, Gong P. Virol Sin 32 548-552 (2017)
  28. Snapshots of a Non-Canonical RdRP in Action. Ferrero DS, Falqui M, Verdaguer N. Viruses 13 1260 (2021)
  29. Within and Beyond the Nucleotide Addition Cycle of Viral RNA-dependent RNA Polymerases. Gong P. Front Mol Biosci 8 822218 (2021)
  30. Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases. Watkins CL, Kempf BJ, Beaucourt S, Barton DJ, Peersen OB. J Biol Chem 295 10624-10637 (2020)
  31. Structural basis of transition from initiation to elongation in de novo viral RNA-dependent RNA polymerases. Wu J, Wang X, Liu Q, Lu G, Gong P. Proc Natl Acad Sci U S A 120 e2211425120 (2023)
  32. The ins and outs of viral RNA polymerase translocation. Boehr DD. J Mol Biol 426 1373-1376 (2014)
  33. Computational Analysis of Amiloride Analogue Inhibitors of Coxsackievirus B3 RNA Polymerase. Holien JK, Gazina EV, Elliott RW, Jarrott B, Cameron CE, Williams SJ, Parker MW, Petrou S. J Proteomics Bioinform Suppl 9 004 (2014)
  34. RR3DD: an RNA global structure-based RNA three-dimensional structural classification database. Hong X, Zheng J, Xie J, Tong X, Liu X, Song Q, Liu S, Liu S. RNA Biol 18 738-746 (2021)
  35. Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model. Waqqar S, Lee K, Lawley B, Bilton T, Quiñones-Mateu ME, Bostina M, Burga LN. Cancers (Basel) 15 2541 (2023)
  36. Introductory Journal Article Editorial overview: Virus replication in animals and plants. Kao CC, Peersen OB. Curr Opin Virol 9 iv-v (2014)