4ll1 Citations

The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein.

OpenAccess logo Nat Commun 5 2958 (2014)
Related entries: 4gfx, 4ll4

Cited: 85 times
EuropePMC logo PMID: 24389582

Abstract

The redox-dependent inhibition of thioredoxin (TRX) by thioredoxin-interacting protein (TXNIP) plays a pivotal role in various cancers and metabolic syndromes. However, the molecular mechanism of this regulation is largely unknown. Here, we present the crystal structure of the TRX-TXNIP complex and demonstrate that the inhibition of TRX by TXNIP is mediated by an intermolecular disulphide interaction resulting from a novel disulphide bond-switching mechanism. Upon binding to TRX, TXNIP undergoes a structural rearrangement that involves switching of a head-to-tail interprotomer Cys63-Cys247 disulphide between TXNIP molecules to an interdomain Cys63-Cys190 disulphide, and the formation of a de novo intermolecular TXNIP Cys247-TRX Cys32 disulphide. This disulphide-switching event unexpectedly results in a domain arrangement of TXNIP that is entirely different from those of other arrestin family proteins. We further show that the intermolecular disulphide bond between TRX and TXNIP dissociates in the presence of high concentrations of reactive oxygen species. This study provides insight into TRX and TXNIP-dependent cellular regulation.

Reviews - 4ll1 mentioned but not cited (1)

  1. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Peterson YK, Luttrell LM. Pharmacol Rev 69 256-297 (2017)

Articles - 4ll1 mentioned but not cited (6)

  1. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Hwang J, Suh HW, Jeon YH, Hwang E, Nguyen LT, Yeom J, Lee SG, Lee C, Kim KJ, Kang BS, Jeong JO, Oh TK, Choi I, Lee JO, Kim MH. Nat Commun 5 2958 (2014)
  2. Impact of key residues within chloroplast thioredoxin-f on recognition for reduction and oxidation of target proteins. Yokochi Y, Sugiura K, Takemura K, Yoshida K, Hara S, Wakabayashi KI, Kitao A, Hisabori T. J Biol Chem 294 17437-17450 (2019)
  3. Structures of the germline-specific Deadhead and thioredoxin T proteins from Drosophila melanogaster reveal unique features among thioredoxins. Freier R, Aragón E, Bagiński B, Pluta R, Martin-Malpartida P, Ruiz L, Condeminas M, Gonzalez C, Macias MJ. IUCrJ 8 281-294 (2021)
  4. TXNIP-mediated crosstalk between oxidative stress and glucose metabolism. Kim S, Ge J, Kim D, Lee JJ, Choi YJ, Chen W, Bowman JW, Foo SS, Chang LC, Liang Q, Hara D, Choi I, Kim MH, Eoh H, Jung JU. PLoS One 19 e0292655 (2024)
  5. Effects of Environmental and Electric Perturbations on the pKa of Thioredoxin Cysteine 35: A Computational Study. D'Annibale V, Fracassi D, Marracino P, D'Inzeo G, D'Abramo M. Molecules 27 6454 (2022)
  6. N-Lobe of TXNIP Is Critical in the Allosteric Regulation of NLRP3 via TXNIP Binding. Cheng F, Wang N. Front Aging Neurosci 14 893919 (2022)


Reviews citing this publication (28)

  1. Biological and physiological role of reactive oxygen species--the good, the bad and the ugly. Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Acta Physiol (Oxf) 214 329-348 (2015)
  2. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism. Liemburg-Apers DC, Willems PH, Koopman WJ, Grefte S. Arch Toxicol 89 1209-1226 (2015)
  3. Redox regulation of immunometabolism. Muri J, Kopf M. Nat Rev Immunol 21 363-381 (2021)
  4. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Ren X, Zou L, Zhang X, Branco V, Wang J, Carvalho C, Holmgren A, Lu J. Antioxid Redox Signal 27 989-1010 (2017)
  5. Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell. Shalev A. Mol Endocrinol 28 1211-1220 (2014)
  6. The NLRP3 Inflammasome: Metabolic Regulation and Contribution to Inflammaging. Meyers AK, Zhu X. Cells 9 E1808 (2020)
  7. Chemistry and Enzymology of Disulfide Cross-Linking in Proteins. Fass D, Thorpe C. Chem Rev 118 1169-1198 (2018)
  8. New Insights into the Mechanisms of Pyroptosis and Implications for Diabetic Kidney Disease. Lin J, Cheng A, Cheng K, Deng Q, Zhang S, Lan Z, Wang W, Chen J. Int J Mol Sci 21 E7057 (2020)
  9. TXNIP: A Double-Edged Sword in Disease and Therapeutic Outlook. Pan M, Zhang F, Qu K, Liu C, Zhang J. Oxid Med Cell Longev 2022 7805115 (2022)
  10. Thioredoxin-Interacting Protein as a Novel Potential Therapeutic Target in Diabetes Mellitus and Its Underlying Complications. Wondafrash DZ, Nire'a AT, Tafere GG, Desta DM, Berhe DA, Zewdie KA. Diabetes Metab Syndr Obes 13 43-51 (2020)
  11. Nutraceutical Strategies for Suppressing NLRP3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond. McCarty MF, Iloki Assanga SB, Lewis Luján L, O'Keefe JH, DiNicolantonio JJ. Nutrients 13 E47 (2020)
  12. The Emerging Role of TXNIP in Ischemic and Cardiovascular Diseases; A Novel Marker and Therapeutic Target. Domingues A, Jolibois J, Marquet de Rougé P, Nivet-Antoine V. Int J Mol Sci 22 1693 (2021)
  13. AMPK-Mediated Regulation of Alpha-Arrestins and Protein Trafficking. O'Donnell AF, Schmidt MC. Int J Mol Sci 20 E515 (2019)
  14. Targeting NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) Inflammasome in Cardiovascular Disorders. Wang Z, Hu W, Lu C, Ma Z, Jiang S, Gu C, Acuña-Castroviejo D, Yang Y. Arterioscler Thromb Vasc Biol 38 2765-2779 (2018)
  15. The thioredoxin system: Balancing redox responses in immune cells and tumors. Muri J, Kopf M. Eur J Immunol 53 e2249948 (2023)
  16. Regulatory Role of Redox Balance in Determination of Neural Precursor Cell Fate. Iqbal MA, Eftekharpour E. Stem Cells Int 2017 9209127 (2017)
  17. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy. Zheng X, Wan J, Tan G. Front Immunol 14 1151185 (2023)
  18. Thioredoxin-Interacting Protein in Cancer and Diabetes. Masutani H. Antioxid Redox Signal 36 1001-1022 (2022)
  19. The Importance of Thioredoxin-1 in Health and Disease. Oberacker T, Kraft L, Schanz M, Latus J, Schricker S. Antioxidants (Basel) 12 1078 (2023)
  20. Thioredoxin-interacting protein, hematopoietic stem cells, and hematopoiesis. Jung H, Choi I. Curr Opin Hematol 21 265-270 (2014)
  21. Thioredoxin interacting protein, a key molecular switch between oxidative stress and sterile inflammation in cellular response. Mohamed IN, Li L, Ismael S, Ishrat T, El-Remessy AB. World J Diabetes 12 1979-1999 (2021)
  22. The role of TXNIP in cancer: a fine balance between redox, metabolic, and immunological tumor control. Deng J, Pan T, Liu Z, McCarthy C, Vicencio JM, Cao L, Alfano G, Suwaidan AA, Yin M, Beatson R, Ng T. Br J Cancer 129 1877-1892 (2023)
  23. The α-Arrestin ARRDC3 Is an Emerging Multifunctional Adaptor Protein in Cancer. Wedegaertner H, Pan WA, Gonzalez CC, Gonzalez DJ, Trejo J. Antioxid Redox Signal 36 1066-1079 (2022)
  24. Reductive Reprogramming: A Not-So-Radical Hypothesis of Neurodegeneration Linking Redox Perturbations to Neuroinflammation and Excitotoxicity. Foley TD. Cell Mol Neurobiol 39 577-590 (2019)
  25. Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Agrahari AK, Dikshit M, Asthana S. Comput Struct Biotechnol J 20 3734-3754 (2022)
  26. Emerging Evidence of the Significance of Thioredoxin-1 in Hematopoietic Stem Cell Aging. Jabbar S, Mathews P, Kang Y. Antioxidants (Basel) 11 1291 (2022)
  27. Physiological and Pathophysiological Roles of Thioredoxin Interacting Protein: A Perspective on Redox Inflammation and Metabolism. Dagdeviren S, Lee RT, Wu N. Antioxid Redox Signal 38 442-460 (2023)
  28. Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models. Shcholok T, Eftekharpour E. Biology (Basel) 13 180 (2024)

Articles citing this publication (50)

  1. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Gallon M, Clairfeuille T, Steinberg F, Mas C, Ghai R, Sessions RB, Teasdale RD, Collins BM, Cullen PJ. Proc Natl Acad Sci U S A 111 E3604-13 (2014)
  2. Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Frudd K, Burgoyne T, Burgoyne JR. Nat Commun 9 95 (2018)
  3. mTOR and HDAC Inhibitors Converge on the TXNIP/Thioredoxin Pathway to Cause Catastrophic Oxidative Stress and Regression of RAS-Driven Tumors. Malone CF, Emerson C, Ingraham R, Barbosa W, Guerra S, Yoon H, Liu LL, Michor F, Haigis M, Macleod KF, Maertens O, Cichowski K. Cancer Discov 7 1450-1463 (2017)
  4. New insights into salvianolic acid A action: Regulation of the TXNIP/NLRP3 and TXNIP/ChREBP pathways ameliorates HFD-induced NAFLD in rats. Ding C, Zhao Y, Shi X, Zhang N, Zu G, Li Z, Zhou J, Gao D, Lv L, Tian X, Yao J. Sci Rep 6 28734 (2016)
  5. The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation. Muri J, Heer S, Matsushita M, Pohlmeier L, Tortola L, Fuhrer T, Conrad M, Zamboni N, Kisielow J, Kopf M. Nat Commun 9 1851 (2018)
  6. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Sente A, Peer R, Srivastava A, Baidya M, Lesk AM, Balaji S, Shukla AK, Babu MM, Flock T. Nat Struct Mol Biol 25 538-545 (2018)
  7. Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p38 kinase activity. Jung H, Kim DO, Byun JE, Kim WS, Kim MJ, Song HY, Kim YK, Kang DK, Park YJ, Kim TD, Yoon SR, Lee HG, Choi EJ, Min SH, Choi I. Nat Commun 7 13674 (2016)
  8. Thioredoxin-interacting protein links endoplasmic reticulum stress to inflammatory brain injury and apoptosis after subarachnoid haemorrhage. Zhao Q, Che X, Zhang H, Fan P, Tan G, Liu L, Jiang D, Zhao J, Xiang X, Liang Y, Sun X, He Z. J Neuroinflammation 14 104 (2017)
  9. Asbestos modulates thioredoxin-thioredoxin interacting protein interaction to regulate inflammasome activation. Thompson JK, Westbom CM, MacPherson MB, Mossman BT, Heintz NH, Spiess P, Shukla A. Part Fibre Toxicol 11 24 (2014)
  10. Reciprocity in ROS and autophagic signaling. Wible DJ, Bratton SB. Curr Opin Toxicol 7 28-36 (2018)
  11. Exosomes Derived From Mesenchymal Stromal Cells Pretreated With Advanced Glycation End Product-Bovine Serum Albumin Inhibit Calcification of Vascular Smooth Muscle Cells. Wang Y, Ma WQ, Zhu Y, Han XQ, Liu N. Front Endocrinol (Lausanne) 9 524 (2018)
  12. Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Marchetto A, Ohmura S, Orth MF, Knott MML, Colombo MV, Arrigoni C, Bardinet V, Saucier D, Wehweck FS, Li J, Stein S, Gerke JS, Baldauf MC, Musa J, Dallmayer M, Romero-Pérez L, Hölting TLB, Amatruda JF, Cossarizza A, Henssen AG, Kirchner T, Moretti M, Cidre-Aranaz F, Sannino G, Grünewald TGP. Nat Commun 11 2423 (2020)
  13. The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity. Berndt C, Schwenn JD, Lillig CH. Chem Sci 6 7049-7058 (2015)
  14. AAV-Txnip prolongs cone survival and vision in mouse models of retinitis pigmentosa. Xue Y, Wang SK, Rana P, West ER, Hong CM, Feng H, Wu DM, Cepko CL. Elife 10 e66240 (2021)
  15. ATP exposure stimulates glutathione efflux as a necessary switch for NLRP3 inflammasome activation. Zhang T, Tsutsuki H, Islam W, Ono K, Takeda K, Akaike T, Sawa T. Redox Biol 41 101930 (2021)
  16. Sodium butyrate-activated TRAF6-TXNIP pathway affects A549 cells proliferation and migration. Xiao X, Xu Y, Chen H. Cancer Med 9 3477-3488 (2020)
  17. TXN inhibitor impedes radioresistance of colorectal cancer cells with decreased ALDH1L2 expression via TXN/NF-κB signaling pathway. Yu L, Guo Q, Luo Z, Wang Y, Weng J, Chen Y, Liang W, Li Y, Zhang Y, Chen K, Chen Z, Ding Y, Zhang Y. Br J Cancer 127 637-648 (2022)
  18. Thioredoxin-Interacting Protein Mediates Apoptosis in Early Brain Injury after Subarachnoid Haemorrhage. Zhao Q, Che X, Zhang H, Tan G, Liu L, Jiang D, Zhao J, Xiang X, Sun X, He Z. Int J Mol Sci 18 E854 (2017)
  19. Curcumin relieves paraquat‑induced lung injury through inhibiting the thioredoxin interacting protein/NLR pyrin domain containing 3‑mediated inflammatory pathway. Ren Y, Yang Z, Sun Z, Zhang W, Chen X, Nie S. Mol Med Rep 20 5032-5040 (2019)
  20. Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells. Levring TB, Kongsbak-Wismann M, Rode AKO, Al-Jaberi FAH, Lopez DV, Met Ö, Met Ö, Woetmann A, Bonefeld CM, Ødum N, Geisler C. Sci Rep 9 16725 (2019)
  21. Crystal structure of fully oxidized human thioredoxin. Hwang J, Nguyen LT, Jeon YH, Lee CY, Kim MH. Biochem Biophys Res Commun 467 218-222 (2015)
  22. Insights into β2-adrenergic receptor binding from structures of the N-terminal lobe of ARRDC3. Qi S, O'Hayre M, Gutkind JS, Hurley JH. Protein Sci 23 1708-1716 (2014)
  23. Mitigative effects of the bioactive flavonol fisetin on high-fat/high-sucrose induced nonalcoholic fatty liver disease in rats. Gaballah HH, El-Horany HE, Helal DS. J Cell Biochem 120 12762-12774 (2019)
  24. ADAMTS10 inhibits aggressiveness via JAK/STAT/c-MYC pathway and reprograms macrophage to create an anti-malignant microenvironment in gastric cancer. Zhou J, Li T, Chen H, Jiang Y, Zhao Y, Huang J, Chen Z, Tang X, Huang Z, Yang Z. Gastric Cancer 25 1002-1016 (2022)
  25. TXNIP interaction with GLUT1 depends on PI(4,5)P2. Dykstra H, LaRose C, Fisk C, Waldhart A, Meng X, Zhao G, Wu N. Biochim Biophys Acta Biomembr 1863 183757 (2021)
  26. Identification of Redox and Glucose-Dependent Txnip Protein Interactions. Forred BJ, Neuharth S, Kim DI, Amolins MW, Motamedchaboki K, Roux KJ, Vitiello PF. Oxid Med Cell Longev 2016 5829063 (2016)
  27. Redox-Inactive Peptide Disrupting Trx1-Ask1 Interaction for Selective Activation of Stress Signaling. Kekulandara DN, Nagi S, Seo H, Chow CS, Ahn YH. Biochemistry 57 772-780 (2018)
  28. Txnip C247S mutation protects the heart against acute myocardial infarction. Nakayama Y, Mukai N, Wang BF, Yang K, Patwari P, Kitsis RN, Yoshioka J. J Mol Cell Cardiol 155 36-49 (2021)
  29. Melatonin, an endogenous hormone, modulates Th17 cells via the reactive-oxygen species/TXNIP/HIF-1α axis to alleviate autoimmune uveitis. Huang J, Li Z, Hu Y, Li Z, Xie Y, Huang H, Chen Q, Chen G, Zhu W, Chen Y, Su W, Chen X, Liang D. J Neuroinflammation 19 124 (2022)
  30. Nicorandil attenuates endothelial VCAM-1 expression via thioredoxin production in diabetic rats induced by streptozotocin. Liu L, Liu Y, Qi B, Wu Q, Li Y, Wang Z. Mol Med Rep 9 2227-2232 (2014)
  31. Ras Suppresses TXNIP Expression by Restricting Ribosome Translocation. Ye Z, Ayer DE. Mol Cell Biol 38 e00178-18 (2018)
  32. Transcriptional Profiling Suggests Extensive Metabolic Rewiring of Human and Mouse Macrophages during Early Interferon Alpha Responses. Ahmed D, Jaworski A, Roy D, Willmore W, Golshani A, Cassol E. Mediators Inflamm 2018 5906819 (2018)
  33. Novel lncRNA-prader willi/angelman region RNA, SNRPN neighbour (PWARSN) aggravates tubular epithelial cell pyroptosis by regulating TXNIP via dual way in diabetic kidney disease. Song Y, Guo F, Zhao YY, Ma XJ, Wu LN, Yu JF, Ji HF, Shao MW, Huang FJ, Zhao L, Fan XJ, Xu YN, Wang QZ, Qin GJ. Cell Prolif 56 e13349 (2023)
  34. Reactive Oxygen Species Contributes to Type 2 Diabetic Neuropathic Pain via the Thioredoxin-Interacting Protein-NOD-Like Receptor Protein 3- N -Methyl-D-Aspartic Acid Receptor 2B Pathway. Wang JW, Ye XY, Wei N, Wu SS, Zhang ZH, Luo GH, Li X, Li J, Cao H. Anesth Analg 135 865-876 (2022)
  35. Galectin-3 induces vascular smooth muscle cells calcification via AMPK/TXNIP pathway. Tian L, Wang Y, Zhang R. Aging (Albany NY) 14 5086-5096 (2022)
  36. Structural basis for thioredoxin-mediated suppression of NLRP1 inflammasome. Zhang Z, Shibata T, Fujimura A, Kitaura J, Miyake K, Ohto U, Shimizu T. Nature 622 188-194 (2023)
  37. Thioredoxin-interacting protein is essential for memory T cell formation via the regulation of the redox metabolism. Kokubo K, Hirahara K, Kiuchi M, Tsuji K, Shimada Y, Sonobe Y, Shinmi R, Hishiya T, Iwamura C, Onodera A, Nakayama T. Proc Natl Acad Sci U S A 120 e2218345120 (2023)
  38. Time-resolved assessment of single-cell protein secretion by sequencing. Wu T, Womersley HJ, Wang JR, Scolnick J, Cheow LF. Nat Methods 20 723-734 (2023)
  39. A pan-cancer analysis of thioredoxin-interacting protein as an immunological and prognostic biomarker. Guo X, Huang M, Zhang H, Chen Q, Hu Y, Meng Y, Wu C, Tu C, Liu Y, Li A, Li Q, Zhou P, Liu S. Cancer Cell Int 22 230 (2022)
  40. RETRACTED: Effect of thioredoxin-interacting protein on Wnt/β-catenin signaling pathway and diabetic myocardial infarction. Yu H, Zhao XX, Shan XH, Li P, Chen T. Asian Pac J Trop Med 8 976-982 (2015)
  41. Structure of Spo0M, a sporulation-control protein from Bacillus subtilis. Sonoda Y, Mizutani K, Mikami B. Acta Crystallogr F Struct Biol Commun 71 1488-1497 (2015)
  42. De novo assembly and functional annotation of blood transcriptome of loggerhead turtle, and in silico characterization of peroxiredoxins and thioredoxins. Hernández-Fernández J, Pinzón Velasco AM, López Barrera EA, Rodríguez Becerra MDP, Villanueva-Cañas JL, Alba MM, Mariño Ramírez L. PeerJ 9 e12395 (2021)
  43. Divergent regulation of α-arrestin ARRDC3 function by ubiquitination. Wedegaertner H, Bosompra O, Kufareva I, Trejo J. Mol Biol Cell 34 ar93 (2023)
  44. First molecular characterisation and expression analysis of a teleost thioredoxin-interacting protein (TXNIP) gene from rock bream (Oplegnathus fasciatus). Kim JW, Lee JH, Bae JS, An CM, Nam BH, Jeong JM, Park CI. Dev Comp Immunol 52 69-74 (2015)
  45. Hydrogen peroxide detoxification through the peroxiredoxin/thioredoxin antioxidant system: A look at the pancreatic β-cell oxidant defense. Stancill JS, Corbett JA. Vitam Horm 121 45-66 (2023)
  46. Thioredoxin is a metabolic rheostat controlling regulatory B cells. Bradford HF, McDonnell TCR, Stewart A, Skelton A, Ng J, Baig Z, Fraternali F, Dunn-Walters D, Isenberg DA, Khan AR, Mauro C, Mauri C. Nat Immunol 25 873-885 (2024)
  47. Txnip deletions and missense alleles prolong the survival of cones in a retinitis pigmentosa mouse model. Xue Y, Zhou Y, Cepko CL. Elife 12 RP90749 (2024)
  48. Analysis of prognostic biomarker models of TXNIP/NLRP3/IL1B inflammasome pathway in patients with acute myeloid leukemia. Chen J, Hou Q, Chang T, Zheng J, Yao C, He J, Chen S, Wu X, Jin Z. Int J Med Sci 21 1438-1446 (2024)
  49. Distinct or Overlapping Areas of Mitochondrial Thioredoxin 2 May Be Used for Its Covalent and Strong Non-Covalent Interactions with Protein Ligands. Ntallis C, Tzoupis H, Tselios T, Chasapis CT, Vlamis-Gardikas A. Antioxidants (Basel) 13 15 (2023)
  50. The desert woodrat (Neotoma lepida) induces a diversity of biotransformation genes in response to creosote bush resin. Greenhalgh R, Klure DM, Orr TJ, Armstrong NM, Shapiro MD, Dearing MD. Comp Biochem Physiol C Toxicol Pharmacol 280 109870 (2024)