4mmc Citations

Structural basis for action by diverse antidepressants on biogenic amine transporters.

OpenAccess logo Nature 503 141-5 (2013)
Related entries: 4mm4, 4mm5, 4mm6, 4mm7, 4mm8, 4mm9, 4mma, 4mmb, 4mmd, 4mme, 4mmf

Cited: 88 times
EuropePMC logo PMID: 24121440

Abstract

The biogenic amine transporters (BATs) regulate endogenous neurotransmitter concentrations and are targets for a broad range of therapeutic agents including selective serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors (SNRIs) and tricyclic antidepressants (TCAs). Because eukaryotic BATs are recalcitrant to crystallographic analysis, our understanding of the mechanism of these inhibitors and antidepressants is limited. LeuT is a bacterial homologue of BATs and has proven to be a valuable paradigm for understanding relationships between their structure and function. However, because only approximately 25% of the amino acid sequence of LeuT is in common with that of BATs, and as LeuT is a promiscuous amino acid transporter, it does not recapitulate the pharmacological properties of BATs. Indeed, SSRIs and TCAs bind in the extracellular vestibule of LeuT and act as non-competitive inhibitors of transport. By contrast, multiple studies demonstrate that both TCAs and SSRIs are competitive inhibitors for eukaryotic BATs and bind to the primary binding pocket. Here we engineered LeuT to harbour human BAT-like pharmacology by mutating key residues around the primary binding pocket. The final LeuBAT mutant binds the SSRI sertraline with a binding constant of 18 nM and displays high-affinity binding to a range of SSRIs, SNRIs and a TCA. We determined 12 crystal structures of LeuBAT in complex with four classes of antidepressants. The chemically diverse inhibitors have a remarkably similar mode of binding in which they straddle transmembrane helix (TM) 3, wedge between TM3/TM8 and TM1/TM6, and lock the transporter in a sodium- and chloride-bound outward-facing open conformation. Together, these studies define common and simple principles for the action of SSRIs, SNRIs and TCAs on BATs.

Articles - 4mmc mentioned but not cited (1)

  1. Structural basis for action by diverse antidepressants on biogenic amine transporters. Wang H, Goehring A, Wang KH, Penmatsa A, Ressler R, Gouaux E. Nature 503 141-145 (2013)


Reviews citing this publication (17)

  1. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL. Drug Alcohol Depend 147 1-19 (2015)
  2. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Rudnick G, Krämer R, Blakely RD, Murphy DL, Verrey F. Pflugers Arch 466 25-42 (2014)
  3. Monoamine transporters: structure, intrinsic dynamics and allosteric regulation. Cheng MH, Bahar I. Nat Struct Mol Biol 26 545-556 (2019)
  4. Insights into the mechanism and pharmacology of neurotransmitter sodium symporters. Navratna V, Gouaux E. Curr Opin Struct Biol 54 161-170 (2019)
  5. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Diallinas G. Front Pharmacol 5 207 (2014)
  6. Monoamine transporters: insights from molecular dynamics simulations. Grouleff J, Ladefoged LK, Koldsø H, Schiøtt B. Front Pharmacol 6 235 (2015)
  7. Overview of Monoamine Transporters. Aggarwal S, Mortensen OV. Curr Protoc Pharmacol 79 12.16.1-12.16.17 (2017)
  8. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters. Loland CJ. Biochim Biophys Acta 1850 500-510 (2015)
  9. Structure and Gating Dynamics of Na+/Cl- Coupled Neurotransmitter Transporters. Joseph D, Pidathala S, Mallela AK, Penmatsa A. Front Mol Biosci 6 80 (2019)
  10. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. J Biol Chem 296 100557 (2021)
  11. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. Fairweather SJ, Shah N, Brӧer S. Adv Exp Med Biol 21 13-127 (2021)
  12. Insights to ligand binding to the monoamine transporters-from homology modeling to LeuBAT and dDAT. Koldsø H, Grouleff J, Schiøtt B. Front Pharmacol 6 208 (2015)
  13. Paroxetine-Overview of the Molecular Mechanisms of Action. Kowalska M, Nowaczyk J, Fijałkowski Ł, Nowaczyk A. Int J Mol Sci 22 1662 (2021)
  14. Discovery of novel-scaffold monoamine transporter ligands via in silico screening with the S1 pocket of the serotonin transporter. Nolan TL, Geffert LM, Kolber BJ, Madura JD, Surratt CK. ACS Chem Neurosci 5 784-792 (2014)
  15. A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain. Bhatt M, Gauthier-Manuel L, Lazzarin E, Zerlotti R, Ziegler C, Bazzone A, Stockner T, Bossi E. Front Physiol 14 1145973 (2023)
  16. Taurine and Creatine Transporters as Potential Drug Targets in Cancer Therapy. Stary D, Bajda M. Int J Mol Sci 24 3788 (2023)
  17. Discovery and Development of Monoamine Transporter Ligands. Aggarwal S, Mortensen OV. Adv Neurobiol 30 101-129 (2023)

Articles citing this publication (70)

  1. X-ray structures and mechanism of the human serotonin transporter. Coleman JA, Green EM, Gouaux E. Nature 532 334-339 (2016)
  2. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Wang KH, Penmatsa A, Gouaux E. Nature 521 322-327 (2015)
  3. X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Penmatsa A, Wang KH, Gouaux E. Nat Struct Mol Biol 22 506-508 (2015)
  4. Structural biology of solute carrier (SLC) membrane transport proteins. Bai X, Moraes TF, Reithmeier RAF. Mol Membr Biol 34 1-32 (2017)
  5. Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Coleman JA, Gouaux E. Nat Struct Mol Biol 25 170-175 (2018)
  6. Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning. Unger EK, Keller JP, Altermatt M, Liang R, Matsui A, Dong C, Hon OJ, Yao Z, Sun J, Banala S, Flanigan ME, Jaffe DA, Hartanto S, Carlen J, Mizuno GO, Borden PM, Shivange AV, Cameron LP, Sinning S, Underhill SM, Olson DE, Amara SG, Temple Lang D, Rudnick G, Marvin JS, Lavis LD, Lester HA, Alvarez VA, Fisher AJ, Prescher JA, Kash TL, Yarov-Yarovoy V, Gradinaru V, Looger LL, Tian L. Cell 183 1986-2002.e26 (2020)
  7. NbIT--a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT. LeVine MV, Weinstein H. PLoS Comput Biol 10 e1003603 (2014)
  8. 'Second-generation' mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Saha K, Partilla JS, Lehner KR, Seddik A, Stockner T, Holy M, Sandtner W, Ecker GF, Sitte HH, Baumann MH. Neuropsychopharmacology 40 1321-1331 (2015)
  9. Molecular basis for selective serotonin reuptake inhibition by the antidepressant agent fluoxetine (Prozac). Andersen J, Stuhr-Hansen N, Zachariassen LG, Koldsø H, Schiøtt B, Strømgaard K, Kristensen AS. Mol Pharmacol 85 703-714 (2014)
  10. A conserved leucine occupies the empty substrate site of LeuT in the Na(+)-free return state. Malinauskaite L, Said S, Sahin C, Grouleff J, Shahsavar A, Bjerregaard H, Noer P, Severinsen K, Boesen T, Schiøtt B, Sinning S, Nissen P. Nat Commun 7 11673 (2016)
  11. Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study. Xue W, Wang P, Li B, Li Y, Xu X, Yang F, Yao X, Chen YZ, Xu F, Zhu F. Phys Chem Chem Phys 18 3260-3271 (2016)
  12. Chemical and structural investigation of the paroxetine-human serotonin transporter complex. Coleman JA, Navratna V, Antermite D, Yang D, Bull JA, Gouaux E. Elife 9 e56427 (2020)
  13. Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters. Johnson ZL, Lee JH, Lee K, Lee M, Kwon DY, Hong J, Lee SY. Elife 3 e03604 (2014)
  14. Identification of novel inhibitors of the amino acid transporter B0 AT1 (SLC6A19), a potential target to induce protein restriction and to treat type 2 diabetes. Cheng Q, Shah N, Bröer A, Fairweather S, Jiang Y, Schmoll D, Corry B, Bröer S. Br J Pharmacol 174 468-482 (2017)
  15. Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter. Rannversson H, Andersen J, Sørensen L, Bang-Andersen B, Park M, Huber T, Sakmar TP, Strømgaard K. Nat Commun 7 11261 (2016)
  16. Antidepressants are modifiers of lipid bilayer properties. Kapoor R, Peyear TA, Koeppe RE, Andersen OS. J Gen Physiol 151 342-356 (2019)
  17. Structure and function of the divalent anion/Na+ symporter from Vibrio cholerae and a humanized variant. Nie R, Stark S, Symersky J, Kaplan RS, Lu M. Nat Commun 8 15009 (2017)
  18. Transition metal ion FRET uncovers K+ regulation of a neurotransmitter/sodium symporter. Billesbølle CB, Mortensen JS, Sohail A, Schmidt SG, Shi L, Sitte HH, Gether U, Loland CJ. Nat Commun 7 12755 (2016)
  19. Investigation of Multiple Resistance Mechanisms in Voriconazole-Resistant Aspergillus flavus Clinical Isolates from a Chest Hospital Surveillance in Delhi, India. Sharma C, Kumar R, Kumar N, Masih A, Gupta D, Chowdhary A. Antimicrob Agents Chemother 62 e01928-17 (2018)
  20. Substrate-induced unlocking of the inner gate determines the catalytic efficiency of a neurotransmitter:sodium symporter. Billesbølle CB, Krüger MB, Shi L, Quick M, Li Z, Stolzenberg S, Kniazeff J, Gotfryd K, Mortensen JS, Javitch JA, Weinstein H, Loland CJ, Gether U. J Biol Chem 290 26725-26738 (2015)
  21. Identification of novel serotonin transporter compounds by virtual screening. Gabrielsen M, Kurczab R, Siwek A, Wolak M, Ravna AW, Kristiansen K, Kufareva I, Abagyan R, Nowak G, Chilmonczyk Z, Sylte I, Bojarski AJ. J Chem Inf Model 54 933-943 (2014)
  22. Exploring the Inhibitory Mechanism of Approved Selective Norepinephrine Reuptake Inhibitors and Reboxetine Enantiomers by Molecular Dynamics Study. Zheng G, Xue W, Wang P, Yang F, Li B, Li X, Li Y, Yao X, Zhu F. Sci Rep 6 26883 (2016)
  23. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter. Davis BA, Nagarajan A, Forrest LR, Singh SK. Sci Rep 6 23789 (2016)
  24. Computational and biochemical docking of the irreversible cocaine analog RTI 82 directly demonstrates ligand positioning in the dopamine transporter central substrate-binding site. Dahal RA, Pramod AB, Sharma B, Krout D, Foster JD, Cha JH, Cao J, Newman AH, Lever JR, Vaughan RA, Henry LK. J Biol Chem 289 29712-29727 (2014)
  25. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Pidathala S, Mallela AK, Joseph D, Penmatsa A. Nat Commun 12 2199 (2021)
  26. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin. Bjerregaard H, Severinsen K, Said S, Wiborg O, Sinning S. J Biol Chem 290 7747-7755 (2015)
  27. Dopamine transporter oligomerization involves the scaffold domain, but spares the bundle domain. Jayaraman K, Morley AN, Szöllősi D, Wassenaar TA, Sitte HH, Stockner T. PLoS Comput Biol 14 e1006229 (2018)
  28. MemStar: a one-shot Escherichia coli-based approach for high-level bacterial membrane protein production. Lee C, Kang HJ, Hjelm A, Qureshi AA, Nji E, Choudhury H, Beis K, de Gier JW, Drew D. FEBS Lett 588 3761-3769 (2014)
  29. A conserved salt bridge between transmembrane segments 1 and 10 constitutes an extracellular gate in the dopamine transporter. Pedersen AV, Andreassen TF, Loland CJ. J Biol Chem 289 35003-35014 (2014)
  30. 2-Substituted 3β-Aryltropane Cocaine Analogs Produce Atypical Effects without Inducing Inward-Facing Dopamine Transporter Conformations. Hong WC, Kopajtic TA, Xu L, Lomenzo SA, Jean B, Madura JD, Surratt CK, Trudell ML, Katz JL. J Pharmacol Exp Ther 356 624-634 (2016)
  31. Computational characterization of the selective inhibition of human norepinephrine and serotonin transporters by an escitalopram scaffold. Zheng G, Yang F, Fu T, Tu G, Chen Y, Yao X, Xue W, Zhu F. Phys Chem Chem Phys 20 29513-29527 (2018)
  32. Hippocampal MicroRNAs Respond to Administration of Antidepressant Fluoxetine in Adult Mice. Miao N, Jin J, Kim SN, Sun T. Int J Mol Sci 19 E671 (2018)
  33. Scaffold Repurposing of Nucleosides (Adenosine Receptor Agonists): Enhanced Activity at the Human Dopamine and Norepinephrine Sodium Symporters. Tosh DK, Janowsky A, Eshleman AJ, Warnick E, Gao ZG, Chen Z, Gizewski E, Auchampach JA, Salvemini D, Jacobson KA. J Med Chem 60 3109-3123 (2017)
  34. Structure-activity relationship studies of citalopram derivatives: examining substituents conferring selectivity for the allosteric site in the 5-HT transporter. Larsen MA, Plenge P, Andersen J, Eildal JN, Kristensen AS, Bøgesø KP, Gether U, Strømgaard K, Bang-Andersen B, Loland CJ. Br J Pharmacol 173 925-936 (2016)
  35. A structural model of the human serotonin transporter in an outward-occluded state. Hellsberg E, Ecker GF, Stary-Weinzinger A, Forrest LR. PLoS One 14 e0217377 (2019)
  36. Molecular Basis of the Leishmanicidal Activity of the Antidepressant Sertraline as a Drug Repurposing Candidate. Lima ML, Abengózar MA, Nácher-Vázquez M, Martínez-Alcázar MP, Barbas C, Tempone AG, Tempone AG, López-Gonzálvez Á, Rivas L. Antimicrob Agents Chemother 62 e01928-18 (2018)
  37. Thermostabilization of the Human Serotonin Transporter in an Antidepressant-Bound Conformation. Green EM, Coleman JA, Gouaux E. PLoS One 10 e0145688 (2015)
  38. Biophysical Approaches to the Study of LeuT, a Prokaryotic Homolog of Neurotransmitter Sodium Symporters. Singh SK, Pal A. Methods Enzymol 557 167-198 (2015)
  39. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine. Janowsky A, Tosh DK, Eshleman AJ, Jacobson KA. J Pharmacol Exp Ther 357 24-35 (2016)
  40. Supramolecular Complexes of β-Cyclodextrin with Clomipramine and Doxepin: Effect of the Ring Substituent and Component of Drugs on Their Inclusion Topologies and Structural Flexibilities. Aree T. Pharmaceuticals (Basel) 13 E278 (2020)
  41. Hybrid molecules inhibiting myeloperoxidase activity and serotonin reuptake: a possible new approach of major depressive disorders with inflammatory syndrome. Soubhye J, Aldib I, Prévost M, Elfving B, Gelbcke M, Podrecca M, Conotte R, Colet JM, Furtmüller PG, Delporte C, Rousseau A, Vanhaeverbeek M, Nève J, Obinger C, Zouaoui-Boudjeltia K, Van Antwerpen P, Dufrasne F. J Pharm Pharmacol 66 1122-1132 (2014)
  42. Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteomicelles. LeVine MV, Khelashvili G, Shi L, Quick M, Javitch JA, Weinstein H. Biochemistry 55 850-859 (2016)
  43. From linked open data to molecular interaction: studying selectivity trends for ligands of the human serotonin and dopamine transporter. Zdrazil B, Hellsberg E, Viereck M, Ecker GF. Medchemcomm 7 1819-1831 (2016)
  44. Structure Modeling of the Norepinephrine Transporter. Góral I, Łątka K, Bajda M. Biomolecules 10 E102 (2020)
  45. The role of human C5a as a non-genomic target in corticosteroid therapy for management of severe COVID19. Das A, Rana S. Comput Biol Chem 92 107482 (2021)
  46. The substrate import mechanism of the human serotonin transporter. Chan MC, Selvam B, Young HJ, Procko E, Shukla D. Biophys J 121 715-730 (2022)
  47. Using a collection of MUPP1 domains to investigate the similarities of neurotransmitter transporters C-terminal PDZ motifs. Baliova M, Juhasova A, Jursky F. Biochem Biophys Res Commun 454 25-29 (2014)
  48. 3D similarities between the binding sites of monoaminergic target proteins. Núñez-Vivanco G, Fierro A, Moya P, Iturriaga-Vásquez P, Reyes-Parada M. PLoS One 13 e0200637 (2018)
  49. Azidobupramine, an Antidepressant-Derived Bifunctional Neurotransmitter Transporter Ligand Allowing Covalent Labeling and Attachment of Fluorophores. Kirmeier T, Gopalakrishnan R, Gormanns V, Werner AM, Cuboni S, Rudolf GC, Höfner G, Wanner KT, Sieber SA, Schmidt U, Holsboer F, Rein T, Hausch F. PLoS One 11 e0148608 (2016)
  50. Combined Simulation and Mutation Studies to Elucidate Selectivity of Unsubstituted Amphetamine-like Cathinones at the Dopamine Transporter. Seddik A, Geerke DP, Stockner T, Holy M, Kudlacek O, Cozzi NV, Ruoho AE, Sitte HH, Ecker GF. Mol Inform 36 (2017)
  51. Exploration of insights, opportunities and caveats provided by the X-ray structures of hSERT. Topiol S, Bang-Andersen B, Sanchez C, Bøgesø KP. Bioorg Med Chem Lett 26 5058-5064 (2016)
  52. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation. Rannversson H, Wilson P, Kristensen KB, Sinning S, Kristensen AS, Strømgaard K, Andersen J. J Biol Chem 290 14582-14594 (2015)
  53. Kite-Shaped Molecules Block SARS-CoV-2 Cell Entry at a Post-Attachment Step. Chan SW, Shafi T, Ford RC. Viruses 13 2306 (2021)
  54. Structural insights into GABA transport inhibition using an engineered neurotransmitter transporter. Joseph D, Nayak SR, Penmatsa A. EMBO J 41 e110735 (2022)
  55. A comparison between adsorption mechanism of tricyclic antidepressants on silver nanoparticles and binding modes on receptors. Surface-enhanced Raman spectroscopy studies. Jaworska A, Malek K. J Colloid Interface Sci 431 117-124 (2014)
  56. Advancing insights on β-cyclodextrin inclusion complexes with SSRIs through lens of X-ray diffraction and DFT calculation. Aree T. Int J Pharm 609 121113 (2021)
  57. Snapshot of antidepressants at work: the structure of neurotransmitter transporter proteins. Cuboni S, Hausch F. Angew Chem Int Ed Engl 53 5008-5009 (2014)
  58. Identification of novel serotonin reuptake inhibitors targeting central and allosteric binding sites: A virtual screening and molecular dynamics simulations study. Erol I, Aksoydan B, Kantarcioglu I, Salmas RE, Durdagi S. J Mol Graph Model 74 193-202 (2017)
  59. Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs. Krout D, Pramod AB, Dahal RA, Tomlinson MJ, Sharma B, Foster JD, Zou MF, Boatang C, Newman AH, Lever JR, Vaughan RA, Henry LK. Biochem Pharmacol 142 204-215 (2017)
  60. Non-conserved residues dictate dopamine transporter selectivity for the potent synthetic cathinone and psychostimulant MDPV. Steele TWE, Spires Z, Jones CB, Glennon RA, Dukat M, Eltit JM. Neuropharmacology 200 108820 (2021)
  61. Predicting the activity and toxicity of new psychoactive substances: a pharmaceutical industry perspective. Leach AG. Drug Test Anal 6 739-745 (2014)
  62. The Lepidopteran KAAT1 and CAATCH1: Orthologs to Understand Structure-Function Relationships in Mammalian SLC6 Transporters. Castagna M, Cinquetti R, Verri T, Vacca F, Giovanola M, Barca A, Romanazzi T, Roseti C, Galli A, Bossi E. Neurochem Res 47 111-126 (2022)
  63. Truly-Biocompatible Gold Catalysis Enables Vivo-Orthogonal Intra-CNS Release of Anxiolytics. Ortega-Liebana MC, Porter NJ, Adam C, Valero T, Hamilton L, Sieger D, Becker CG, Unciti-Broceta A. Angew Chem Int Ed Engl 61 e202111461 (2022)
  64. Analysis of Binding Determinants for Different Classes of Competitive and Noncompetitive Inhibitors of Glycine Transporters. Łątka K, Bajda M. Int J Mol Sci 23 8050 (2022)
  65. Substrate and Inhibitor-Specific Conformational Changes in the Human Serotonin Transporter Revealed by Voltage-Clamp Fluorometry. Söderhielm PC, Andersen J, Munro L, Nielsen AT, Kristensen AS, Kristensen AS. Mol Pharmacol 88 676-688 (2015)
  66. Synthesis, Docking, 3-D-Qsar, and Biological Assays of Novel Indole Derivatives Targeting Serotonin Transporter, Dopamine D2 Receptor, and Mao-A Enzyme: In the Pursuit for Potential Multitarget Directed Ligands. Cerda-Cavieres C, Quiroz G, Iturriaga-Vásquez P, Rodríguez-Lavado J, Alarcón-Espósito J, Saitz C, Pessoa-Mahana CD, Chung H, Araya-Maturana R, Mella-Raipán J, Cabezas D, Ojeda-Gómez C, Reyes-Parada M, Pessoa-Mahana H. Molecules 25 E4614 (2020)
  67. X-ray structure based evaluation of analogs of citalopram: Compounds with increased affinity and selectivity compared with R-citalopram for the allosteric site (S2) on hSERT. Topiol S, Bang-Andersen B, Sanchez C, Plenge P, Loland CJ, Juhl K, Larsen K, Bregnedal P, Bøgesø KP. Bioorg Med Chem Lett 27 470-478 (2017)
  68. Computational and biological evidences on the serotonergic involvement of SeTACN antidepressant-like effect in mice. Fronza MG, Brod LMP, Casaril AM, Sacramento M, Alves D, Savegnago L. PLoS One 12 e0187445 (2017)
  69. Editorial Fishing with flies, worms and bacteria: emerging models for mammalian membrane transport and trafficking. Thwaites DT. J Physiol 592 861 (2014)
  70. Synthesis and in silico evaluation of novel compounds for PET-based investigations of the norepinephrine transporter. Neudorfer C, Seddik A, Shanab K, Jurik A, Rami-Mark C, Holzer W, Ecker G, Mitterhauser M, Wadsak W, Spreitzer H. Molecules 20 1712-1730 (2015)