4nwz Citations

Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation.

Mol Microbiol 91 950-64 (2014)
Cited: 65 times
EuropePMC logo PMID: 24444429

Abstract

Non-proton pumping type II NADH dehydrogenase (NDH-2) plays a central role in the respiratory metabolism of bacteria, and in the mitochondria of fungi, plants and protists. The lack of NDH-2 in mammalian mitochondria and its essentiality in important bacterial pathogens suggests these enzymes may represent a potential new drug target to combat microbial pathogens. Here, we report the first crystal structure of a bacterial NDH-2 enzyme at 2.5 Å resolution from Caldalkalibacillus thermarum. The NDH-2 structure reveals a homodimeric organization that has a unique dimer interface. NDH-2 is localized to the cytoplasmic membrane by two separated C-terminal membrane-anchoring regions that are essential for membrane localization and FAD binding, but not NDH-2 dimerization. Comparison of bacterial NDH-2 with the yeast NADH dehydrogenase (Ndi1) structure revealed non-overlapping binding sites for quinone and NADH in the bacterial enzyme. The bacterial NDH-2 structure establishes a framework for the structure-based design of small-molecule inhibitors.

Reviews - 4nwz mentioned but not cited (3)

  1. The Blueprint of a Minimal Cell: MiniBacillus. Reuß DR, Commichau FM, Gundlach J, Zhu B, Stülke J. Microbiol Mol Biol Rev 80 955-987 (2016)
  2. Monotopic Membrane Proteins Join the Fold. Allen KN, Entova S, Ray LC, Imperiali B. Trends Biochem Sci 44 7-20 (2019)
  3. On the Natural History of Flavin-Based Electron Bifurcation. Baymann F, Schoepp-Cothenet B, Duval S, Guiral M, Brugna M, Baffert C, Russell MJ, Nitschke W. Front Microbiol 9 1357 (2018)

Articles - 4nwz mentioned but not cited (9)

  1. The mechanism of catalysis by type-II NADH:quinone oxidoreductases. Blaza JN, Bridges HR, Aragão D, Dunn EA, Heikal A, Cook GM, Nakatani Y, Hirst J. Sci Rep 7 40165 (2017)
  2. Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family. Marreiros BC, Sena FV, Sousa FM, Oliveira AS, Soares CM, Batista AP, Pereira MM. Sci Rep 7 42303 (2017)
  3. The 7-phenyl benzoxaborole series is active against Mycobacterium tuberculosis. Korkegian A, O'Malley T, Xia Y, Zhou Y, Carter DS, Sunde B, Flint L, Thompson D, Ioerger TR, Sacchettini J, Alley MRK, Parish T. Tuberculosis (Edinb) 108 96-98 (2018)
  4. Crystal structure of type II NADH:quinone oxidoreductase from Caldalkalibacillus thermarum with an improved resolution of 2.15 Å. Nakatani Y, Jiao W, Aragão D, Shimaki Y, Petri J, Parker EJ, Cook GM. Acta Crystallogr F Struct Biol Commun 73 541-549 (2017)
  5. Revealing the Membrane-Bound Catalytic Oxidation of NADH by the Drug Target Type-II NADH Dehydrogenase. Godoy-Hernandez A, Tate DJ, McMillan DGG. Biochemistry 58 4272-4275 (2019)
  6. Expression, purification, crystallization and preliminary X-ray diffraction analysis of a type II NADH:quinone oxidoreductase from the human pathogen Staphylococcus aureus. Rosário AL, Sena FV, Batista AP, Oliveira TF, Athayde D, Pereira MM, Brito JA, Archer M. Acta Crystallogr F Struct Biol Commun 71 477-482 (2015)
  7. Mining the Flavoproteome of Brucella ovis, the Brucellosis Causing Agent in Ovis aries. Minjárez-Sáenz M, Martínez-Júlvez M, Yruela I, Medina M. Microbiol Spectr 10 e0229421 (2022)
  8. Structural insights into FSP1 catalysis and ferroptosis inhibition. Lv Y, Liang C, Sun Q, Zhu J, Xu H, Li X, Li YY, Wang Q, Yuan H, Chu B, Zhu D. Nat Commun 14 5933 (2023)
  9. Integrated chemical and genetic screens unveil FSP1 mechanisms of ferroptosis regulation. Nakamura T, Mishima E, Yamada N, Mourão ASD, Trümbach D, Doll S, Wanninger J, Lytton E, Sennhenn P, Nishida Xavier da Silva T, Angeli JPF, Sattler M, Proneth B, Conrad M. Nat Struct Mol Biol 30 1806-1815 (2023)


Reviews citing this publication (5)

  1. NDH-1 and NDH-2 Plastoquinone Reductases in Oxygenic Photosynthesis. Peltier G, Aro EM, Shikanai T. Annu Rev Plant Biol 67 55-80 (2016)
  2. Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Cook GM, Hards K, Dunn E, Heikal A, Nakatani Y, Greening C, Crick DC, Fontes FL, Pethe K, Hasenoehrl E, Berney M. Microbiol Spectr 5 (2017)
  3. Architecture of bacterial respiratory chains. Kaila VRI, Wikström M. Nat Rev Microbiol 19 319-330 (2021)
  4. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery. Sellamuthu S, Singh M, Kumar A, Singh SK. Expert Opin Ther Targets 21 559-570 (2017)
  5. Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant Mycobacterium tuberculosis. McNeil MB, Cheung CY, Waller NJE, Adolph C, Chapman CL, Seeto NEJ, Jowsey W, Li Z, Hameed HMA, Zhang T, Cook GM. Front Cell Infect Microbiol 12 980844 (2022)

Articles citing this publication (48)

  1. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2). Elguindy MM, Nakamaru-Ogiso E. J Biol Chem 290 20815-20826 (2015)
  2. Lanthanide-Dependent Regulation of Methylotrophy in Methylobacteriumaquaticum Strain 22A. Masuda S, Suzuki Y, Fujitani Y, Mitsui R, Nakagawa T, Shintani M, Tani A. mSphere 3 e00462-17 (2018)
  3. Small Molecules Targeting Mycobacterium tuberculosis Type II NADH Dehydrogenase Exhibit Antimycobacterial Activity. Harbut MB, Yang B, Liu R, Yano T, Vilchèze C, Cheng B, Lockner J, Guo H, Yu C, Franzblau SG, Petrassi HM, Jacobs WR, Rubin H, Chatterjee AK, Wang F. Angew Chem Int Ed Engl 57 3478-3482 (2018)
  4. Type-II NADH:quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction. Sena FV, Batista AP, Catarino T, Brito JA, Archer M, Viertler M, Madl T, Cabrita EJ, Pereira MM. Mol Microbiol 98 272-288 (2015)
  5. 2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and Mycobacterium tuberculosis: Structure-Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. Murugesan D, Ray PC, Bayliss T, Prosser GA, Harrison JR, Green K, Soares de Melo C, Feng TS, Street LJ, Chibale K, Warner DF, Mizrahi V, Epemolu O, Scullion P, Ellis L, Riley J, Shishikura Y, Ferguson L, Osuna-Cabello M, Read KD, Green SR, Lamprecht DA, Finin PM, Steyn AJC, Ioerger TR, Sacchettini J, Rhee KY, Arora K, Barry CE, Wyatt PG, Boshoff HIM. ACS Infect Dis 4 954-969 (2018)
  6. Out-of-equilibrium microcompartments for the bottom-up integration of metabolic functions. Beneyton T, Krafft D, Bednarz C, Kleineberg C, Woelfer C, Ivanov I, Vidaković-Koch T, Sundmacher K, Baret JC. Nat Commun 9 2391 (2018)
  7. Activation of type II NADH dehydrogenase by quinolinequinones mediates antitubercular cell death. Heikal A, Hards K, Cheung CY, Menorca A, Timmer MS, Stocker BL, Cook GM. J Antimicrob Chemother 71 2840-2847 (2016)
  8. Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy. Bhattacharjee A, Datta R, Gratton E, Hochbaum AI. Sci Rep 7 3743 (2017)
  9. Type II NADH:quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences. Marreiros BC, Sena FV, Sousa FM, Batista AP, Pereira MM. Environ Microbiol 18 4697-4709 (2016)
  10. Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in Mycobacterium tuberculosis. Dunn EA, Roxburgh M, Larsen L, Smith RA, McLellan AD, Heikal A, Murphy MP, Cook GM. Bioorg Med Chem 22 5320-5328 (2014)
  11. FAD/NADH Dependent Oxidoreductases: From Different Amino Acid Sequences to Similar Protein Shapes for Playing an Ancient Function. Trisolini L, Gambacorta N, Gorgoglione R, Montaruli M, Laera L, Colella F, Volpicella M, De Grassi A, Pierri CL. J Clin Med 8 E2117 (2019)
  12. Genetic and Biochemical Analysis of Anaerobic Respiration in Bacteroides fragilis and Its Importance In Vivo. Ito T, Gallegos R, Matano LM, Butler NL, Hantman N, Kaili M, Coyne MJ, Comstock LE, Malamy MH, Barquera B. mBio 11 e03238-19 (2020)
  13. Characterization of the Pseudomonas aeruginosa NQR complex, a bacterial proton pump with roles in autopoisoning resistance. Raba DA, Rosas-Lemus M, Menzer WM, Li C, Fang X, Liang P, Tuz K, Minh DDL, Juárez O. J Biol Chem 293 15664-15677 (2018)
  14. Role of Type 2 NAD(P)H Dehydrogenase NdbC in Redox Regulation of Carbon Allocation in Synechocystis. Huokko T, Muth-Pawlak D, Battchikova N, Allahverdiyeva Y, Allahverdiyeva Y, Aro EM. Plant Physiol 174 1863-1880 (2017)
  15. Structure of the NDH-2 - HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors. Petri J, Shimaki Y, Jiao W, Bridges HR, Russell ER, Parker EJ, Aragão D, Cook GM, Nakatani Y. Biochim Biophys Acta Bioenerg 1859 482-490 (2018)
  16. The Small RNA ncS35 Regulates Growth in Burkholderia cenocepacia J2315. Kiekens S, Sass A, Van Nieuwerburgh F, Deforce D, Coenye T. mSphere 3 e00579-17 (2018)
  17. Type 2 NADH Dehydrogenase Is the Only Point of Entry for Electrons into the Streptococcus agalactiae Respiratory Chain and Is a Potential Drug Target. Lencina AM, Franza T, Sullivan MJ, Ulett GC, Ipe DS, Gaudu P, Gennis RB, Schurig-Briccio LA. mBio 9 e01034-18 (2018)
  18. NADH Dehydrogenases in Pseudomonas aeruginosa Growth and Virulence. Torres A, Kasturiarachi N, DuPont M, Cooper VS, Bomberger J, Zemke A. Front Microbiol 10 75 (2019)
  19. New complexes containing the internal alternative NADH dehydrogenase (Ndi1) in mitochondria of Saccharomyces cerevisiae. Matus-Ortega MG, Cárdenas-Monroy CA, Flores-Herrera O, Mendoza-Hernández G, Miranda M, González-Pedrajo B, Vázquez-Meza H, Pardo JP. Yeast 32 629-641 (2015)
  20. Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence. Cordero PRF, Grinter R, Hards K, Cryle MJ, Warr CG, Cook GM, Greening C. J Biol Chem 294 18980-18991 (2019)
  21. In Silico Discovery of a Substituted 6-Methoxy-quinalidine with Leishmanicidal Activity in Leishmania infantum. Stevanović S, Perdih A, Senćanski M, Glišić S, Duarte M, Tomás AM, Sena FV, Sousa FM, Pereira MM, Solmajer T. Molecules 23 E772 (2018)
  22. Ubiquinone binding site of yeast NADH dehydrogenase revealed by structures binding novel competitive- and mixed-type inhibitors. Yamashita T, Inaoka DK, Shiba T, Oohashi T, Iwata S, Yagi T, Kosaka H, Miyoshi H, Harada S, Kita K, Hirano K. Sci Rep 8 2427 (2018)
  23. Reciprocal adaptation of rice and Xanthomonas oryzae pv. oryzae: cross-species 2D GWAS reveals the underlying genetics. Zhang F, Hu Z, Wu Z, Lu J, Shi Y, Xu J, Wang X, Wang J, Zhang F, Wang M, Shi X, Cui Y, Vera Cruz C, Zhuo D, Hu D, Li M, Wang W, Zhao X, Zheng T, Fu B, Ali J, Zhou Y, Li Z. Plant Cell 33 2538-2561 (2021)
  24. Regulation of the mechanism of Type-II NADH: Quinone oxidoreductase from S. aureus. Sena FV, Sousa FM, Oliveira ASF, Soares CM, Catarino T, Pereira MM. Redox Biol 16 209-214 (2018)
  25. Improving electron trans-inner membrane movements in microbial electrocatalysts. Tao L, Xie M, Chiew GG, Wang Z, Chen WN, Wang X. Chem Commun (Camb) 52 6292-6295 (2016)
  26. Biochemical characterization and inhibition of the alternative oxidase enzyme from the fungal phytopathogen Moniliophthora perniciosa. Barsottini MRO, Copsey A, Young L, Baroni RM, Cordeiro AT, Pereira GAG, Moore AL. Commun Biol 3 263 (2020)
  27. Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. de Jong SI, van den Broek MA, Merkel AY, de la Torre Cortes P, Kalamorz F, Cook GM, van Loosdrecht MCM, McMillan DGG. Extremophiles 24 923-935 (2020)
  28. Identification and characterization of a noncanonical menaquinone-linked formate dehydrogenase. Arias-Cartín R, Uzel A, Seduk F, Gerbaud G, Pierrel F, Broc M, Lebrun R, Guigliarelli B, Magalon A, Grimaldi S, Walburger A. J Biol Chem 298 101384 (2022)
  29. Expression of alternative NADH dehydrogenases (NDH-2) in the phytopathogenic fungus Ustilago maydis. Matuz-Mares D, Matus-Ortega G, Cárdenas-Monroy C, Romero-Aguilar L, Villalobos-Rocha JC, Vázquez-Meza H, Guerra-Sánchez G, Peña-Díaz A, Pardo JP. FEBS Open Bio 8 1267-1279 (2018)
  30. Leishmania type II dehydrogenase is essential for parasite viability irrespective of the presence of an active complex I. Duarte M, Ferreira C, Khandpur GK, Flohr T, Zimmermann J, Castro H, Herrmann JM, Morgan B, Tomás AM. Proc Natl Acad Sci U S A 118 e2103803118 (2021)
  31. Evolution, structure and membrane association of NDUFAF6, an assembly factor for NADH:ubiquinone oxidoreductase (Complex I). Lemire BD. Mitochondrion 35 13-22 (2017)
  32. New Insights Into the Antibacterial Mechanism of Cryptotanshinone, a Representative Diterpenoid Quinone From Salvia miltiorrhiza Bunge. Chen BC, Ding ZS, Dai JS, Chen NP, Gong XW, Ma LF, Qian CD. Front Microbiol 12 647289 (2021)
  33. Transcriptome analysis of Azospirillum brasilense vegetative and cyst states reveals large-scale alterations in metabolic and replicative gene expression. Malinich EA, Bauer CE. Microb Genom 4 (2018)
  34. Kinetic characterisation and inhibitor sensitivity of Candida albicans and Candida auris recombinant AOX expressed in a self-assembled proteoliposome system. Copsey AC, Barsottini MRO, May B, Xu F, Albury MS, Young L, Moore AL. Sci Rep 11 14748 (2021)
  35. Purification and Characterization of NDH-2 Protein and Elucidating Its Role in Extracellular Electron Transport and Bioelectrogenic Activity. Vamshi Krishna K, Venkata Mohan S. Front Microbiol 10 880 (2019)
  36. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293. Sriherfyna FH, Matsutani M, Hirano K, Koike H, Kataoka N, Yamashita T, Nakamaru-Ogiso E, Matsushita K, Yakushi T. Appl Environ Microbiol 87 e02155-20 (2021)
  37. Central Carbon Metabolism, Sodium-Motive Electron Transfer, and Ammonium Formation by the Vaginal Pathogen Prevotella bivia. Schleicher L, Herdan S, Fritz G, Trautmann A, Seifert J, Steuber J. Int J Mol Sci 22 11925 (2021)
  38. Insight into the Antibacterial Activity of Selected Metal Nanoparticles and Alterations within the Antioxidant Defence System in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Metryka O, Wasilkowski D, Mrozik A. Int J Mol Sci 22 11811 (2021)
  39. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening. Dunn EA, Cook GM, Heikal A. Data Brief 6 275-278 (2016)
  40. Structure of the bc1-cbb3 respiratory supercomplex from Pseudomonas aeruginosa. Di Trani JM, Gheorghita AA, Turner M, Brzezinski P, Ädelroth P, Vahidi S, Howell PL, Rubinstein JL. Proc Natl Acad Sci U S A 120 e2307093120 (2023)
  41. The Profound Influence of Lipid Composition on the Catalysis of the Drug Target NADH Type II Oxidoreductase. Godoy-Hernandez A, McMillan DGG. Membranes (Basel) 11 363 (2021)
  42. The oligomeric state of the Caldivirga maquilingensis type III sulfide:Quinone Oxidoreductase is required for membrane binding. Lencina AM, Gennis RB, Schurig-Briccio LA. Biochim Biophys Acta Bioenerg 1861 148132 (2020)
  43. Comparative Study of Quercetin and Hyperoside: Antimicrobial Potential towards Food Spoilage Bacteria, Mode of Action and Molecular Docking. Tagrida M, Palamae S, Saetang J, Ma L, Hong H, Benjakul S. Foods 12 4051 (2023)
  44. Comprehensive essentiality analysis of the Mycobacterium kansasii genome by saturation transposon mutagenesis and deep sequencing. Levendosky K, Janisch N, Quadri LEN. mBio 14 e0057323 (2023)
  45. Letter FSP1 oxidizes NADPH to suppress ferroptosis. Zhang S, Gou S, Zhang Q, Yong X, Gan B, Jia D. Cell Res (2023)
  46. Imidazopyridine Amides: Synthesis, Mycobacterium smegmatis CIII2CIV2 Supercomplex Binding, and In Vitro Antimycobacterial Activity. Abdelaziz R, Di Trani JM, Sahile H, Mann L, Richter A, Liu Z, Bueler SA, Cowen LE, Rubinstein JL, Imming P. ACS Omega 8 19081-19098 (2023)
  47. Membrane proteome of the thermoalkaliphile Caldalkalibacillus thermarum TA2.A1. de Jong SI, Sorokin DY, van Loosdrecht MCM, Pabst M, McMillan DGG. Front Microbiol 14 1228266 (2023)
  48. Synthesis and Investigation of Phthalazinones as Antitubercular Agents. Santoso KT, Cheung CY, Hards K, Cook GM, Stocker BL, Timmer MSM. Chem Asian J 14 1278-1285 (2019)