4qqw Citations

Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation.

OpenAccess logo Nat Struct Mol Biol 21 771-7 (2014)
Related entries: 4qqx, 4qqy, 4qqz

Cited: 111 times
EuropePMC logo PMID: 25132177

Abstract

CRISPR drives prokaryotic adaptation to invasive nucleic acids such as phages and plasmids, using an RNA-mediated interference mechanism. Interference in type I CRISPR-Cas systems requires a targeting Cascade complex and a degradation machine, Cas3, which contains both nuclease and helicase activities. Here we report the crystal structures of Thermobifida fusca Cas3 bound to single-stranded (ss) DNA substrate and show that it is an obligate 3'-to-5' ssDNase that preferentially accepts substrate directly from the helicase moiety. Conserved residues in the HD-type nuclease coordinate two irons for ssDNA cleavage. We demonstrate ATP coordination and conformational flexibility of the SF2-type helicase domain. Cas3 is specifically guided toward Cascade-bound target DNA by a PAM sequence, through physical interactions with both the nontarget substrate strand and the CasA protein. The sequence of recognition events ensures well-controlled DNA targeting and degradation of foreign DNA by Cascade and Cas3.

Reviews - 4qqw mentioned but not cited (4)

  1. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. Plagens A, Richter H, Charpentier E, Randau L. FEMS Microbiol Rev 39 442-463 (2015)
  2. Harnessing "A Billion Years of Experimentation": The Ongoing Exploration and Exploitation of CRISPR-Cas Immune Systems. Klompe SE, Sternberg SH. CRISPR J 1 141-158 (2018)
  3. Cas3 Protein-A Review of a Multi-Tasking Machine. He L, St John James M, Radovcic M, Ivancic-Bace I, Bolt EL. Genes (Basel) 11 E208 (2020)
  4. Structure Principles of CRISPR-Cas Surveillance and Effector Complexes. Tsui TK, Li H. Annu Rev Biophys 44 229-255 (2015)

Articles - 4qqw mentioned but not cited (9)

  1. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Huo Y, Nam KH, Ding F, Lee H, Wu L, Xiao Y, Farchione MD, Zhou S, Rajashankar K, Kurinov I, Zhang R, Ke A. Nat Struct Mol Biol 21 771-777 (2014)
  2. Structure basis for RNA-guided DNA degradation by Cascade and Cas3. Xiao Y, Luo M, Dolan AE, Liao M, Ke A. Science 361 eaat0839 (2018)
  3. Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. Rollins MF, Chowdhury S, Carter J, Golden SM, Wilkinson RA, Bondy-Denomy J, Lander GC, Wiedenheft B. Proc Natl Acad Sci U S A 114 E5113-E5121 (2017)
  4. OpenAWSEM with Open3SPN2: A fast, flexible, and accessible framework for large-scale coarse-grained biomolecular simulations. Lu W, Bueno C, Schafer NP, Moller J, Jin S, Chen X, Chen M, Gu X, Davtyan A, de Pablo JJ, Wolynes PG. PLoS Comput Biol 17 e1008308 (2021)
  5. The HD-Domain Metalloprotein Superfamily: An Apparent Common Protein Scaffold with Diverse Chemistries. Langton M, Sun S, Ueda C, Markey M, Chen J, Paddy I, Jiang P, Chin N, Milne A, Pandelia ME. Catalysts 10 1191 (2020)
  6. Structural basis for inhibition of an archaeal CRISPR-Cas type I-D large subunit by an anti-CRISPR protein. Manav MC, Van LB, Lin J, Fuglsang A, Peng X, Brodersen DE. Nat Commun 11 5993 (2020)
  7. A CRISPR RNA Is Closely Related With the Size of the Cascade Nucleoprotein Complex. Gu DH, Ha SC, Kim JS. Front Microbiol 10 2458 (2019)
  8. A Tryptophan 'Gate' in the CRISPR-Cas3 Nuclease Controls ssDNA Entry into the Nuclease Site, That When Removed Results in Nuclease Hyperactivity. He L, Matošević ZJ, Mitić D, Markulin D, Killelea T, Matković M, Bertoša B, Ivančić-Baće I, Bolt EL. Int J Mol Sci 22 2848 (2021)
  9. Metal Dependence and Functional Diversity of Type I Cas3 Nucleases. Sun S, He Z, Jiang P, Baral R, Pandelia ME. Biochemistry 61 327-338 (2022)


Reviews citing this publication (31)

  1. An updated evolutionary classification of CRISPR-Cas systems. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV. Nat Rev Microbiol 13 722-736 (2015)
  2. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Wright AV, Nuñez JK, Doudna JA. Cell 164 29-44 (2016)
  3. CRISPR-Cas immunity in prokaryotes. Marraffini LA. Nature 526 55-61 (2015)
  4. CRISPR-Cas: Adapting to change. Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJ. Science 356 eaal5056 (2017)
  5. A decade of discovery: CRISPR functions and applications. Barrangou R, Horvath P. Nat Microbiol 2 17092 (2017)
  6. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Jiang W, Marraffini LA. Annu Rev Microbiol 69 209-228 (2015)
  7. Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? Makarova KS, Wolf YI, Koonin EV. CRISPR J 1 325-336 (2018)
  8. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Koonin EV, Makarova KS. Genome Biol Evol 9 2812-2825 (2017)
  9. Diversity of CRISPR-Cas immune systems and molecular machines. Barrangou R. Genome Biol 16 247 (2015)
  10. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Nishimasu H, Nureki O. Curr Opin Struct Biol 43 68-78 (2017)
  11. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Zheng Y, Li J, Wang B, Han J, Hao Y, Wang S, Ma X, Yang S, Ma L, Yi L, Peng W. Front Bioeng Biotechnol 8 62 (2020)
  12. Phages Fight Back: Inactivation of the CRISPR-Cas Bacterial Immune System by Anti-CRISPR Proteins. Maxwell KL. PLoS Pathog 12 e1005282 (2016)
  13. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Jia N, Patel DJ. Nat Rev Mol Cell Biol 22 563-579 (2021)
  14. Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals. Shabbir MA, Hao H, Shabbir MZ, Wu Q, Sattar A, Yuan Z. Front Microbiol 7 1292 (2016)
  15. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Liu TY, Doudna JA. J Biol Chem 295 14473-14487 (2020)
  16. Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. Zhu Y, Zhang F, Huang Z. BMC Biol 16 32 (2018)
  17. CRISPR-Cas Technologies and Applications in Food Bacteria. Stout E, Klaenhammer T, Barrangou R. Annu Rev Food Sci Technol 8 413-437 (2017)
  18. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies. Newsom S, Parameshwaran HP, Martin L, Rajan R. Front Cell Infect Microbiol 10 619763 (2020)
  19. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. Xue C, Sashital DG. EcoSal Plus 8 (2019)
  20. How bacteria control the CRISPR-Cas arsenal. Leon LM, Mendoza SD, Bondy-Denomy J. Curr Opin Microbiol 42 87-95 (2018)
  21. Insights into the Human Virome Using CRISPR Spacers from Microbiomes. Hidalgo-Cantabrana C, Sanozky-Dawes R, Barrangou R. Viruses 10 E479 (2018)
  22. Genome editing technologies to fight infectious diseases. Trevisan M, Palù G, Barzon L. Expert Rev Anti Infect Ther 15 1001-1013 (2017)
  23. Types I and V Anti-CRISPR Proteins: From Phage Defense to Eukaryotic Synthetic Gene Circuits. Yu L, Marchisio MA. Front Bioeng Biotechnol 8 575393 (2020)
  24. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Thompson MK, Sobol RW, Prakash A. Biology (Basel) 10 530 (2021)
  25. CRISPR-Based Genome Editing Tools: An Accelerator in Crop Breeding for a Changing Future. Zhang F, Neik TX, Thomas WJW, Batley J. Int J Mol Sci 24 8623 (2023)
  26. Molecular Details of DNA Integration by CRISPR-Associated Proteins During Adaptation in Bacteria and Archaea. Flusche T, Rajan R. Adv Exp Med Biol 1414 27-43 (2023)
  27. Precision targeting of food biofilm-forming genes by microbial scissors: CRISPR-Cas as an effective modulator. Ghosh S, Lahiri D, Nag M, Sarkar T, Pati S, Edinur HA, Kumar M, Mohd Zain MRA, Ray RR. Front Microbiol 13 964848 (2022)
  28. Helicases in R-loop Formation and Resolution. Yang S, Winstone L, Mondal S, Wu Y. J Biol Chem 299 105307 (2023)
  29. The biology and type I/III hybrid nature of type I-D CRISPR-Cas systems. McBride TM, Cameron SC, Fineran PC, Fagerlund RD. Biochem J 480 471-488 (2023)
  30. CRISPR-based nucleic acid diagnostics for pathogens. Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. Trends Analyt Chem 160 116980 (2023)
  31. Type I CRISPR-Cas-mediated microbial gene editing and regulation. Xu Z, Chen S, Wu W, Wen Y, Cao H. AIMS Microbiol 9 780-800 (2023)

Articles citing this publication (67)

  1. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR. Nature 526 136-139 (2015)
  2. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Peters JE, Makarova KS, Shmakov S, Koonin EV. Proc Natl Acad Sci U S A 114 E7358-E7366 (2017)
  3. Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex. Chowdhury S, Carter J, Rollins MF, Golden SM, Jackson RN, Hoffmann C, Nosaka L, Bondy-Denomy J, Maxwell KL, Davidson AR, Fischer ER, Lander GC, Wiedenheft B. Cell 169 47-57.e11 (2017)
  4. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Hayes RP, Xiao Y, Ding F, van Erp PB, Rajashankar K, Bailey S, Wiedenheft B, Ke A. Nature 530 499-503 (2016)
  5. Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System. Xiao Y, Luo M, Hayes RP, Kim J, Ng S, Ding F, Liao M, Ke A. Cell 170 48-60.e11 (2017)
  6. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Wang X, Yao D, Xu JG, Li AR, Xu J, Fu P, Zhou Y, Zhu Y. Nat Struct Mol Biol 23 868-870 (2016)
  7. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation. Künne T, Kieper SN, Bannenberg JW, Vogel AI, Miellet WR, Klein M, Depken M, Suarez-Diez M, Brouns SJ. Mol Cell 63 852-864 (2016)
  8. Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas. Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, Freddolino PL, Ke A, Zhang Y. Mol Cell 74 936-950.e5 (2019)
  9. Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex. Hale CR, Cocozaki A, Li H, Terns RM, Terns MP. Genes Dev 28 2432-2443 (2014)
  10. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, Xu H, Sasakawa N, Naito Y, Nakada S, Yamamoto T, Sano S, Hotta A, Takeda J, Mashimo T. Nat Commun 10 5302 (2019)
  11. Spacer capture and integration by a type I-F Cas1-Cas2-3 CRISPR adaptation complex. Fagerlund RD, Wilkinson ME, Klykov O, Barendregt A, Pearce FG, Kieper SN, Maxwell HWR, Capolupo A, Heck AJR, Krause KL, Bostina M, Scheltema RA, Staals RHJ, Fineran PC. Proc Natl Acad Sci U S A 114 E5122-E5128 (2017)
  12. Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Hidalgo-Cantabrana C, Goh YJ, Pan M, Sanozky-Dawes R, Barrangou R. Proc Natl Acad Sci U S A 116 15774-15783 (2019)
  13. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Gong B, Shin M, Sun J, Jung CH, Bolt EL, van der Oost J, Kim JS. Proc Natl Acad Sci U S A 111 16359-16364 (2014)
  14. Massively Parallel Biophysical Analysis of CRISPR-Cas Complexes on Next Generation Sequencing Chips. Jung C, Hawkins JA, Jones SK, Xiao Y, Rybarski JR, Dillard KE, Hussmann J, Saifuddin FA, Savran CA, Ellington AD, Ke A, Press WH, Finkelstein IJ. Cell 170 35-47.e13 (2017)
  15. Assembly and Translocation of a CRISPR-Cas Primed Acquisition Complex. Dillard KE, Brown MW, Johnson NV, Xiao Y, Dolan A, Hernandez E, Dahlhauser SD, Kim Y, Myler LR, Anslyn EV, Ke A, Finkelstein IJ. Cell 175 934-946.e15 (2018)
  16. Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Rollins MF, Chowdhury S, Carter J, Golden SM, Miettinen HM, Santiago-Frangos A, Faith D, Lawrence CM, Lander GC, Wiedenheft B. Mol Cell 74 132-142.e5 (2019)
  17. Crystal structure of the Csm1 subunit of the Csm complex and its single-stranded DNA-specific nuclease activity. Jung TY, An Y, Park KH, Lee MH, Oh BH, Woo E. Structure 23 782-790 (2015)
  18. Letter A CRISPR evolutionary arms race: structural insights into viral anti-CRISPR/Cas responses. Wang J, Ma J, Cheng Z, Meng X, You L, Wang M, Zhang X, Wang Y. Cell Res 26 1165-1168 (2016)
  19. Alternate binding modes of anti-CRISPR viral suppressors AcrF1/2 to Csy surveillance complex revealed by cryo-EM structures. Peng R, Xu Y, Zhu T, Li N, Qi J, Chai Y, Wu M, Zhang X, Shi Y, Wang P, Wang J, Gao N, Gao GF. Cell Res 27 853-864 (2017)
  20. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. Özcan A, Pausch P, Linden A, Wulf A, Schühle K, Heider J, Urlaub H, Heimerl T, Bange G, Randau L. Nat Microbiol 4 89-96 (2019)
  21. Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus. Majumdar S, Zhao P, Pfister NT, Compton M, Olson S, Glover CV, Wells L, Graveley BR, Terns RM, Terns MP. RNA 21 1147-1158 (2015)
  22. DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus. Elmore J, Deighan T, Westpheling J, Terns RM, Terns MP. Nucleic Acids Res 43 10353-10363 (2015)
  23. Priming in a permissive type I-C CRISPR-Cas system reveals distinct dynamics of spacer acquisition and loss. Rao C, Chin D, Ensminger AW. RNA 23 1525-1538 (2017)
  24. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers. Luo ML, Jackson RN, Denny SR, Tokmina-Lukaszewska M, Maksimchuk KR, Lin W, Bothner B, Wiedenheft B, Beisel CL. Nucleic Acids Res 44 7385-7394 (2016)
  25. Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex. Zhu X, Ye K. Nucleic Acids Res 43 1257-1267 (2015)
  26. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Chen Y, Liu J, Zhi S, Zheng Q, Ma W, Huang J, Liu Y, Liu D, Liang P, Songyang Z. Nat Commun 11 3136 (2020)
  27. Real-Time Observation of Target Search by the CRISPR Surveillance Complex Cascade. Xue C, Zhu Y, Zhang X, Shin YK, Sashital DG. Cell Rep 21 3717-3727 (2017)
  28. Bio-Layer Interferometry Analysis of the Target Binding Activity of CRISPR-Cas Effector Complexes. Müller-Esparza H, Osorio-Valeriano M, Steube N, Thanbichler M, Randau L. Front Mol Biosci 7 98 (2020)
  29. Genome editing in mammalian cells using the CRISPR type I-D nuclease. Osakabe K, Wada N, Murakami E, Miyashita N, Osakabe Y. Nucleic Acids Res 49 6347-6363 (2021)
  30. Cas3 is a limiting factor for CRISPR-Cas immunity in Escherichia coli cells lacking H-NS. Majsec K, Bolt EL, Ivančić-Baće I. BMC Microbiol 16 28 (2016)
  31. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Tan R, Krueger RK, Gramelspacher MJ, Zhou X, Xiao Y, Ke A, Hou Z, Zhang Y. Mol Cell 82 852-867.e5 (2022)
  32. Crystal structures of CRISPR-associated Csx3 reveal a manganese-dependent deadenylation exoribonuclease. Yan X, Guo W, Yuan YA. RNA Biol 12 749-760 (2015)
  33. Primed CRISPR DNA uptake in Pyrococcus furiosus. Garrett S, Shiimori M, Watts EA, Clark L, Graveley BR, Terns MP. Nucleic Acids Res 48 6120-6135 (2020)
  34. DNA targeting by subtype I-D CRISPR-Cas shows type I and type III features. Lin J, Fuglsang A, Kjeldsen AL, Sun K, Bhoobalan-Chitty Y, Peng X. Nucleic Acids Res 48 10470-10478 (2020)
  35. Structural analysis of mtEXO mitochondrial RNA degradosome reveals tight coupling of nuclease and helicase components. Razew M, Warkocki Z, Taube M, Kolondra A, Czarnocki-Cieciura M, Nowak E, Labedzka-Dmoch K, Kawinska A, Piatkowski J, Golik P, Kozak M, Dziembowski A, Nowotny M. Nat Commun 9 97 (2018)
  36. Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex. Majumdar S, Ligon M, Skinner WC, Terns RM, Terns MP. Extremophiles 21 95-107 (2017)
  37. The Influence of Copy-Number of Targeted Extrachromosomal Genetic Elements on the Outcome of CRISPR-Cas Defense. Severinov K, Ispolatov I, Semenova E. Front Mol Biosci 3 45 (2016)
  38. An aromatic-rich loop couples DNA binding and ATP hydrolysis in the PriA DNA helicase. Windgassen TA, Keck JL. Nucleic Acids Res 44 9745-9757 (2016)
  39. Allosteric control of type I-A CRISPR-Cas3 complexes and establishment as effective nucleic acid detection and human genome editing tools. Hu C, Ni D, Nam KH, Majumdar S, McLean J, Stahlberg H, Terns MP, Ke A. Mol Cell 82 2754-2768.e5 (2022)
  40. CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes. Majumdar S, Terns MP. Extremophiles 23 19-33 (2019)
  41. CRISPR-Cas system presents multiple transcriptional units including antisense RNAs that are expressed in minimal medium and upregulated by pH in Salmonella enterica serovar Typhi. Medina-Aparicio L, Rebollar-Flores JE, Beltrán-Luviano AA, Vázquez A, Gutiérrez-Ríos RM, Olvera L, Calva E, Hernández-Lucas I. Microbiology (Reading) 163 253-265 (2017)
  42. Cas3/I-C mediated target DNA recognition and cleavage during CRISPR interference are independent of the composition and architecture of Cascade surveillance complex. Nimkar S, Anand B. Nucleic Acids Res 48 2486-2501 (2020)
  43. Extrachromosomal circular elements targeted by CRISPR-Cas in Dehalococcoides mccartyi are linked to mobilization of reductive dehalogenase genes. Molenda O, Tang S, Lomheim L, Gautam VK, Lemak S, Yakunin AF, Maxwell KL, Edwards EA. ISME J 13 24-38 (2019)
  44. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family. Sun S, Pandelia ME. Biochemistry 59 2340-2350 (2020)
  45. Prespacers formed during primed adaptation associate with the Cas1-Cas2 adaptation complex and the Cas3 interference nuclease-helicase. Musharova O, Medvedeva S, Klimuk E, Guzman NM, Titova D, Zgoda V, Shiriaeva A, Semenova E, Severinov K, Savitskaya E. Proc Natl Acad Sci U S A 118 e2021291118 (2021)
  46. Dynamic mechanisms of CRISPR interference by Escherichia coli CRISPR-Cas3. Yoshimi K, Takeshita K, Kodera N, Shibumura S, Yamauchi Y, Omatsu M, Umeda K, Kunihiro Y, Yamamoto M, Mashimo T. Nat Commun 13 4917 (2022)
  47. Type I CRISPR-Cas provides robust immunity but incomplete attenuation of phage-induced cellular stress. Malone LM, Hampton HG, Morgan XC, Fineran PC. Nucleic Acids Res 50 160-174 (2022)
  48. Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2',3'-Phosphoesterase HD Domain and a C-Terminal 5'-OH Polynucleotide Kinase Domain. Munir A, Shuman S. J Bacteriol 199 e00739-16 (2017)
  49. Crystal structure of Thermobifida fusca Cse1 reveals target DNA binding site. Tay M, Liu S, Yuan YA. Protein Sci 24 236-245 (2015)
  50. A molecular arms race: new insights into anti-CRISPR mechanisms. Mallon J, Bailey S. Nat Struct Mol Biol 23 765-766 (2016)
  51. Anti-CRISPR proteins: Counterattack of phages on bacterial defense (CRISPR/Cas) system. Chaudhary K, Chattopadhyay A, Pratap D. J Cell Physiol 233 57-59 (2018)
  52. Deinococcus radiodurans HD-Pnk, a Nucleic Acid End-Healing Enzyme, Abets Resistance to Killing by Ionizing Radiation and Mitomycin C. Schmier BJ, Shuman S. J Bacteriol 200 e00151-18 (2018)
  53. Visualization of phage DNA degradation by a type I CRISPR-Cas system at the single-cell level. Guan J, Shi X, Burgos R, Zeng L. Quant Biol 5 67-75 (2017)
  54. Metagenomic Analysis Reveals Microbial Interactions at the Biocathode of a Bioelectrochemical System Capable of Simultaneous Trichloroethylene and Cr(VI) Reduction. Matturro B, Zepilli M, Lai A, Majone M, Rossetti S. Front Microbiol 12 747670 (2021)
  55. An examination of the metal ion content in the active sites of human endonucleases CPSF73 and INTS11. Huang J, Liu X, Sun Y, Li Z, Lin MH, Hamilton K, Mandel CR, Sandmeir F, Conti E, Oyala PH, Tong L. J Biol Chem 299 103047 (2023)
  56. Introducing Large Genomic Deletions in Human Pluripotent Stem Cells Using CRISPR-Cas3. Hou Z, Hu C, Ke A, Zhang Y. Curr Protoc 2 e361 (2022)
  57. Reconstitution and biochemical characterization of ribonucleoprotein complexes in Type I-E CRISPR-Cas systems. Xiao Y, Ke A. Methods Enzymol 616 27-41 (2019)
  58. Repurposing the atypical type I-G CRISPR system for bacterial genome engineering. Shangguan Q, White MF. Microbiology (Reading) 169 (2023)
  59. Structure reveals why genome folding is necessary for site-specific integration of foreign DNA into CRISPR arrays. Santiago-Frangos A, Henriques WS, Wiegand T, Gauvin CC, Buyukyoruk M, Graham AB, Wilkinson RA, Triem L, Neselu K, Eng ET, Lander GC, Wiedenheft B. Nat Struct Mol Biol 30 1675-1685 (2023)
  60. Characterization of CRISPR-Cas systems in Bifidobacterium breve. Han X, Zhou X, Pei Z, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Microb Genom 8 (2022)
  61. Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system. Aldag P, Rutkauskas M, Madariaga-Marcos J, Songailiene I, Sinkunas T, Kemmerich F, Kauert D, Siksnys V, Seidel R. Nat Commun 14 3654 (2023)
  62. Genetics of CRISPR arrays in Salmonella Typhimurium 14028 associated with foreign DNA decay. Kim JN. Genes Genomics 40 865-872 (2018)
  63. Interrogating two extensively self-targeting Type I CRISPR-Cas systems in Xanthomonas albilineans reveals distinct anti-CRISPR proteins that block DNA degradation. Wimmer F, Englert F, Wandera KG, Alkhnbashi OS, Collins SP, Backofen R, Beisel CL. Nucleic Acids Res 52 769-783 (2024)
  64. One more piece down to solve the III-A CRISPR puzzle. Hayes RP, Ke A. J Mol Biol 427 228-230 (2015)
  65. Structural insights into specific crRNA G-rich sequence binding by Meiothermus ruber Cse2. Liu S, Yuan Z, Yuan YA. J Struct Biol 190 122-134 (2015)
  66. Structure-Function Analysis of the Phosphoesterase Component of the Nucleic Acid End-Healing Enzyme Runella slithyformis HD-Pnk. Munir A, Shuman S. J Bacteriol 201 e00292-19 (2019)
  67. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. Li Y, Huang B, Chen J, Huang L, Xu J, Wang Y, Cui G, Zhao H, Xin B, Song W, Zhu JK, Lai J. Plant Biotechnol J 21 2196-2208 (2023)