4tl7 Citations

Circadian rhythms. Atomic-scale origins of slowness in the cyanobacterial circadian clock.

Science 349 312-6 (2015)
Related entries: 4tl6, 4tl8, 4tl9, 4tla, 4tlb, 4tlc, 4tld, 4tle

Cited: 57 times
EuropePMC logo PMID: 26113637

Abstract

Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.

Articles - 4tl7 mentioned but not cited (3)

  1. Conformational rearrangements of the C1 ring in KaiC measure the timing of assembly with KaiB. Mukaiyama A, Furuike Y, Abe J, Koda SI, Yamashita E, Kondo T, Akiyama S. Sci Rep 8 8803 (2018)
  2. Molecular dynamics simulations of nucleotide release from the circadian clock protein KaiC reveal atomic-resolution functional insights. Hong L, Vani BP, Thiede EH, Rust MJ, Dinner AR. Proc Natl Acad Sci U S A 115 E11475-E11484 (2018)
  3. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Biomolecules 12 1346 (2022)


Reviews citing this publication (16)

  1. Circadian Oscillators: Around the Transcription-Translation Feedback Loop and on to Output. Hurley JM, Loros JJ, Dunlap JC. Trends Biochem Sci 41 834-846 (2016)
  2. The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. Honma S. J Physiol Sci 68 207-219 (2018)
  3. Timing the day: what makes bacterial clocks tick? Johnson CH, Zhao C, Xu Y, Mori T. Nat Rev Microbiol 15 232-242 (2017)
  4. Structure, function, and mechanism of the core circadian clock in cyanobacteria. Swan JA, Golden SS, LiWang A, Partch CL. J Biol Chem 293 5026-5034 (2018)
  5. Circadian oscillator proteins across the kingdoms of life: structural aspects. Saini R, Jaskolski M, Davis SJ. BMC Biol 17 13 (2019)
  6. Functional and Regulatory Roles of Fold-Switching Proteins. Kim AK, Porter LL. Structure 29 6-14 (2021)
  7. Orchestration of Circadian Timing by Macromolecular Protein Assemblies. Partch CL. J Mol Biol 432 3426-3448 (2020)
  8. Non-transcriptional processes in circadian rhythm generation. Wong DC, O'Neill JS. Curr Opin Physiol 5 117-132 (2018)
  9. Design Principles of Phosphorylation-Dependent Timekeeping in Eukaryotic Circadian Clocks. Ode KL, Ueda HR. Cold Spring Harb Perspect Biol 10 a028357 (2018)
  10. Spectres of Clock Evolution: Past, Present, and Yet to Come. Jabbur ML, Johnson CH. Front Physiol 12 815847 (2021)
  11. Toward Multiscale Models of Cyanobacterial Growth: A Modular Approach. Westermark S, Steuer R. Front Bioeng Biotechnol 4 95 (2016)
  12. A period without PER: understanding 24-hour rhythms without classic transcription and translation feedback loops. Millius A, Ode KL, Ueda HR. F1000Res 8 F1000 Faculty Rev-499 (2019)
  13. Architecture and mechanism of the central gear in an ancient molecular timer. Egli M. J R Soc Interface 14 20161065 (2017)
  14. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change. Erenpreisa J, Giuliani A, Yoshikawa K, Falk M, Hildenbrand G, Salmina K, Freivalds T, Vainshelbaum N, Weidner J, Sievers A, Pilarczyk G, Hausmann M. Int J Mol Sci 24 2658 (2023)
  15. Biophysical research in Okazaki, Japan. Akiyama S, Aoki K, Kubo Y. Biophys Rev 12 237-243 (2020)
  16. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Siebieszuk A, Sejbuk M, Witkowska AM. Int J Mol Sci 24 16169 (2023)

Articles citing this publication (38)

  1. Structural basis of the day-night transition in a bacterial circadian clock. Tseng R, Goularte NF, Chavan A, Luu J, Cohen SE, Chang YG, Heisler J, Li S, Michael AK, Tripathi S, Golden SS, LiWang A, Partch CL. Science 355 1174-1180 (2017)
  2. Structures of the cyanobacterial circadian oscillator frozen in a fully assembled state. Snijder J, Schuller JM, Wiegard A, Lössl P, Schmelling N, Axmann IM, Plitzko JM, Förster F, Heck AJ. Science 355 1181-1184 (2017)
  3. Casein kinase 1 dynamics underlie substrate selectivity and the PER2 circadian phosphoswitch. Philpott JM, Narasimamurthy R, Ricci CG, Freeberg AM, Hunt SR, Yee LE, Pelofsky RS, Tripathi S, Virshup DM, Partch CL. Elife 9 e52343 (2020)
  4. Reconstitution of an intact clock reveals mechanisms of circadian timekeeping. Chavan AG, Swan JA, Heisler J, Sancar C, Ernst DC, Fang M, Palacios JG, Spangler RK, Bagshaw CR, Tripathi S, Crosby P, Golden SS, Partch CL, LiWang A. Science 374 eabd4453 (2021)
  5. A thermodynamically consistent model of the post-translational Kai circadian clock. Paijmans J, Lubensky DK, Ten Wolde PR. PLoS Comput Biol 13 e1005415 (2017)
  6. Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation. Oyama K, Azai C, Nakamura K, Tanaka S, Terauchi K. Sci Rep 6 32443 (2016)
  7. Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time. Mori T, Sugiyama S, Byrne M, Johnson CH, Uchihashi T, Ando T. Nat Commun 9 3245 (2018)
  8. The energy cost and optimal design for synchronization of coupled molecular oscillators. Zhang D, Cao Y, Ouyang Q, Tu Y. Nat Phys 16 95-100 (2020)
  9. Tuning the circadian period of cyanobacteria up to 6.6 days by the single amino acid substitutions in KaiC. Ito-Miwa K, Furuike Y, Akiyama S, Kondo T. Proc Natl Acad Sci U S A 117 20926-20931 (2020)
  10. Design principles for enhancing phase sensitivity and suppressing phase fluctuations simultaneously in biochemical oscillatory systems. Fei C, Cao Y, Ouyang Q, Tu Y. Nat Commun 9 1434 (2018)
  11. Structural characterization of the circadian clock protein complex composed of KaiB and KaiC by inverse contrast-matching small-angle neutron scattering. Sugiyama M, Yagi H, Ishii K, Porcar L, Martel A, Oyama K, Noda M, Yunoki Y, Murakami R, Inoue R, Sato N, Oba Y, Terauchi K, Uchiyama S, Kato K. Sci Rep 6 35567 (2016)
  12. Damped circadian oscillation in the absence of KaiA in Synechococcus. Kawamoto N, Ito H, Tokuda IT, Iwasaki H. Nat Commun 11 2242 (2020)
  13. Effect of Multiple Clock Gene Ablations on the Circadian Period Length and Temperature Compensation in Mammalian Cells. Tsuchiya Y, Umemura Y, Minami Y, Koike N, Hosokawa T, Hara M, Ito H, Inokawa H, Yagita K. J Biol Rhythms 31 48-56 (2016)
  14. research-article Just-So Stories and Origin Myths: Phosphorylation and Structural Disorder in Circadian Clock Proteins. Dunlap JC, Loros JJ. Mol Cell 69 165-168 (2018)
  15. Crystal structure of the flagellar accessory protein FlaH of Methanocaldococcus jannaschii suggests a regulatory role in archaeal flagellum assembly. Meshcheryakov VA, Wolf M. Protein Sci 25 1147-1155 (2016)
  16. Development and Optimization of Expression, Purification, and ATPase Assay of KaiC for Medium-Throughput Screening of Circadian Clock Mutants in Cyanobacteria. Ouyang D, Furuike Y, Mukaiyama A, Ito-Miwa K, Kondo T, Akiyama S. Int J Mol Sci 20 E2789 (2019)
  17. Role of ATP Hydrolysis in Cyanobacterial Circadian Oscillator. Das S, Terada TP, Sasai M. Sci Rep 7 17469 (2017)
  18. Mechanism of autonomous synchronization of the circadian KaiABC rhythm. Sasai M. Sci Rep 11 4713 (2021)
  19. CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN. Ono D, Honma KI, Schmal C, Takumi T, Kawamoto T, Fujimoto K, Kato Y, Honma S. Sci Rep 11 19240 (2021)
  20. Coupling of distant ATPase domains in the circadian clock protein KaiC. Swan JA, Sandate CR, Chavan AG, Freeberg AM, Etwaru D, Ernst DC, Palacios JG, Golden SS, LiWang A, Lander GC, Partch CL. Nat Struct Mol Biol 29 759-766 (2022)
  21. Elucidation of master allostery essential for circadian clock oscillation in cyanobacteria. Furuike Y, Mukaiyama A, Ouyang D, Ito-Miwa K, Simon D, Yamashita E, Kondo T, Akiyama S. Sci Adv 8 eabm8990 (2022)
  22. Monitoring Protein-Protein Interactions in the Cyanobacterial Circadian Clock in Real Time via Electron Paramagnetic Resonance Spectroscopy. Chow GK, Chavan AG, Heisler JC, Chang YG, LiWang A, Britt RD. Biochemistry 59 2387-2400 (2020)
  23. Pressure accelerates the circadian clock of cyanobacteria. Kitahara R, Oyama K, Kawamura T, Mitsuhashi K, Kitazawa S, Yasunaga K, Sagara N, Fujimoto M, Terauchi K. Sci Rep 9 12395 (2019)
  24. Single-molecular and ensemble-level oscillations of cyanobacterial circadian clock. Das S, Terada TP, Sasai M. Biophys Physicobiol 15 136-150 (2018)
  25. Circadian Clocks: Unexpected Biochemical Cogs. Mori T, Mchaourab H, Johnson CH. Curr Biol 25 R842-4 (2015)
  26. Letter Treasurer's comments on the financial position of the Biophysical Society of Japan. Akiyama S. Biophys Rev 12 209-211 (2020)
  27. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Biomolecules 12 1345 (2022)
  28. KidA, a multi-PAS domain protein, tunes the period of the cyanobacterial circadian oscillator. Kim SJ, Chi C, Pattanayak G, Dinner AR, Rust MJ. Proc Natl Acad Sci U S A 119 e2202426119 (2022)
  29. Regulation mechanisms of the dual ATPase in KaiC. Furuike Y, Mukaiyama A, Koda SI, Simon D, Ouyang D, Ito-Miwa K, Saito S, Yamashita E, Nishiwaki-Ohkawa T, Terauchi K, Kondo T, Akiyama S. Proc Natl Acad Sci U S A 119 e2119627119 (2022)
  30. Role of the reaction-structure coupling in temperature compensation of the KaiABC circadian rhythm. Sasai M. PLoS Comput Biol 18 e1010494 (2022)
  31. Time from Semiosis: E-series Time for Living Systems. Nomura N, Muranaka T, Tomita J, Matsuno K. Biosemiotics 11 65-83 (2018)
  32. An Adenosine Triphosphate- Dependent 5'-3' DNA Helicase From sk1-Like Lactococcus lactis F13 Phage. Chmielewska-Jeznach M, Steczkiewicz K, Kobyłecki K, Bardowski JK, Szczepankowska AK. Front Microbiol 13 840219 (2022)
  33. Deficiency of circadian clock gene Bmal1 exacerbates noncanonical inflammasome-mediated pyroptosis and lethality via Rev-erbα-C/EBPβ-SAA1 axis. Shim DW, Eo JC, Kim S, Hwang I, Nam B, Shin JE, Han SH, Yu JW. Exp Mol Med 56 370-382 (2024)
  34. Highly sensitive tryptophan fluorescence probe for detecting rhythmic conformational changes of KaiC in the cyanobacterial circadian clock system. Mukaiyama A, Furuike Y, Yamashita E, Akiyama S. Biochem J 479 1505-1515 (2022)
  35. Multimeric structure enables the acceleration of KaiB-KaiC complex formation induced by ADP/ATP exchange inhibition. Koda SI, Saito S. PLoS Comput Biol 18 e1009243 (2022)
  36. news Of ghrelin, cone cultivation, dinoflagellate eyes, and the cyanobacterial circadian clock. Adler EM. J Gen Physiol 146 193-194 (2015)
  37. Protocols for in vitro reconstitution of the cyanobacterial circadian clock. Chavan A, Heisler J, Chang YG, Golden SS, Partch CL, LiWang A. Biopolymers e23559 (2023)
  38. Slow and temperature-compensated autonomous disassembly of KaiB-KaiC complex. Simon D, Mukaiyama A, Furuike Y, Akiyama S. Biophys Physicobiol 19 1-11 (2022)