4tln Citations

Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis.

Biochemistry 20 6912-20 (1981)
Cited: 99 times
EuropePMC logo PMID: 7317361

Reviews - 4tln mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 4tln mentioned but not cited (10)

  1. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. Huang B, Schroeder M. BMC Struct Biol 6 19 (2006)
  2. Side-chain modeling with an optimized scoring function. Liang S, Grishin NV. Protein Sci 11 322-331 (2002)
  3. Assessment of programs for ligand binding affinity prediction. Kim R, Skolnick J. J Comput Chem 29 1316-1331 (2008)
  4. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. Zhang S, Golbraikh A, Tropsha A. J Med Chem 49 2713-2724 (2006)
  5. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines. Roessler CG, Kuczewski A, Stearns R, Ellson R, Olechno J, Orville AM, Allaire M, Soares AS, Héroux A. J Synchrotron Radiat 20 805-808 (2013)
  6. A novel family of soluble minimal scaffolds provides structural insight into the catalytic domains of integral membrane metallopeptidases. López-Pelegrín M, Cerdà-Costa N, Martínez-Jiménez F, Cintas-Pedrola A, Canals A, Peinado JR, Marti-Renom MA, López-Otín C, Arolas JL, Gomis-Rüth FX. J Biol Chem 288 21279-21294 (2013)
  7. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes. Yin X, Scalia A, Leroy L, Cuttitta CM, Polizzo GM, Ericson DL, Roessler CG, Campos O, Ma MY, Agarwal R, Jackimowicz R, Allaire M, Orville AM, Sweet RM, Soares AS. Acta Crystallogr D Biol Crystallogr 70 1177-1189 (2014)
  8. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening. Cuttitta CM, Ericson DL, Scalia A, Roessler CG, Teplitsky E, Joshi K, Campos O, Agarwal R, Allaire M, Orville AM, Sweet RM, Soares AS. Acta Crystallogr D Biol Crystallogr 71 94-103 (2015)
  9. Using sound pulses to solve the crystal-harvesting bottleneck. Samara YN, Brennan HM, McCarthy L, Bollard MT, Laspina D, Wlodek JM, Campos SL, Natarajan R, Gofron K, McSweeney S, Soares AS, Leroy L. Acta Crystallogr D Struct Biol 74 986-999 (2018)
  10. MS3ALIGN: an efficient molecular surface aligner using the topology of surface curvature. Shivashankar N, Patil S, Bhosle A, Chandra N, Natarajan V. BMC Bioinformatics 17 26 (2016)


Reviews citing this publication (8)

  1. Molecular and biotechnological aspects of microbial proteases. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Microbiol Mol Biol Rev 62 597-635 (1998)
  2. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Lombardi PM, Cole KE, Dowling DP, Christianson DW. Curr Opin Struct Biol 21 735-743 (2011)
  3. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Adekoya OA, Sylte I. Chem Biol Drug Des 73 7-16 (2009)
  4. The esterases: perspectives and problems. Aldridge WN. Chem Biol Interact 87 5-13 (1993)
  5. Mammalian metalloendopeptidases. Bond JS, Beynon RJ. Int J Biochem 17 565-574 (1985)
  6. Design and use of potent, specific enzyme inhibitors. Stark GR, Bartlett PA. Pharmacol Ther 23 45-78 (1983)
  7. Determinants of molecular reactivity as criteria for predicting toxicity: problems and approaches. Weinstein H, Rabinowitz J, Liebman MN, Osman R. Environ Health Perspect 61 147-162 (1985)
  8. The Structures and Binding Modes of Small-Molecule Inhibitors of Pseudomonas aeruginosa Elastase LasB. Camberlein V, Jézéquel G, Haupenthal J, Hirsch AKH. Antibiotics (Basel) 11 1060 (2022)

Articles citing this publication (80)

  1. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP. Nature 401 188-193 (1999)
  2. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP. J Comput Aided Mol Des 11 425-445 (1997)
  3. Structure of thermolysin refined at 1.6 A resolution. Holmes MA, Matthews BW. J Mol Biol 160 623-639 (1982)
  4. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H. EMBO J 13 1263-1269 (1994)
  5. Antibiotic activity and characterization of BB-3497, a novel peptide deformylase inhibitor. Clements JM, Beckett RP, Brown A, Catlin G, Lobell M, Palan S, Thomas W, Whittaker M, Wood S, Salama S, Baker PJ, Rodgers HF, Barynin V, Rice DW, Hunter MG. Antimicrob Agents Chemother 45 563-570 (2001)
  6. The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Turk BE, Wong TY, Schwarzenbacher R, Jarrell ET, Leppla SH, Collier RJ, Liddington RC, Cantley LC. Nat Struct Mol Biol 11 60-66 (2004)
  7. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. Volbeda A, Lahm A, Sakiyama F, Suck D. EMBO J 10 1607-1618 (1991)
  8. A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. McClerren AL, Endsley S, Bowman JL, Andersen NH, Guan Z, Rudolph J, Raetz CR. Biochemistry 44 16574-16583 (2005)
  9. Antibacterial activities and characterization of novel inhibitors of LpxC. Clements JM, Coignard F, Johnson I, Chandler S, Palan S, Waller A, Wijkmans J, Hunter MG. Antimicrob Agents Chemother 46 1793-1799 (2002)
  10. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. Jackman JE, Fierke CA, Tumey LN, Pirrung M, Uchiyama T, Tahir SH, Hindsgaul O, Raetz CR. J Biol Chem 275 11002-11009 (2000)
  11. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Grams F, Reinemer P, Powers JC, Kleine T, Pieper M, Tschesche H, Huber R, Bode W. Eur J Biochem 228 830-841 (1995)
  12. The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing. Wong AH, Zhou D, Rini JM. J Biol Chem 287 36804-36813 (2012)
  13. Structural basis of the antiproliferative activity of largazole, a depsipeptide inhibitor of the histone deacetylases. Cole KE, Dowling DP, Boone MA, Phillips AJ, Christianson DW. J Am Chem Soc 133 12474-12477 (2011)
  14. Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family. Sun HW, Plapp BV. J Mol Evol 34 522-535 (1992)
  15. 1.56 A structure of mature truncated human fibroblast collagenase. Spurlino JC, Smallwood AM, Carlton DD, Banks TM, Vavra KJ, Johnson JS, Cook ER, Falvo J, Wahl RC, Pulvino TA. Proteins 19 98-109 (1994)
  16. Crystallographic studies of inhibitor binding sites in human carbonic anhydrase II: a pentacoordinated binding of the SCN- ion to the zinc at high pH. Eriksson AE, Kylsten PM, Jones TA, Liljas A. Proteins 4 283-293 (1988)
  17. Isolation of cDNAs for LCE and HCE, two constituent proteases of the hatching enzyme of Oryzias latipes, and concurrent expression of their mRNAs during development. Yasumasu S, Yamada K, Akasaka K, Mitsunaga K, Iuchi I, Shimada H, Yamagami K. Dev Biol 153 250-258 (1992)
  18. Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in Escherichia coli of Pseudomonas aeruginosa copper azurin. Nar H, Huber R, Messerschmidt A, Filippou AC, Barth M, Jaquinod M, van de Kamp M, Canters GW. Eur J Biochem 205 1123-1129 (1992)
  19. Unusual zinc-binding mode of HDAC6-selective hydroxamate inhibitors. Porter NJ, Mahendran A, Breslow R, Christianson DW. Proc Natl Acad Sci U S A 114 13459-13464 (2017)
  20. The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of Glu151 and two zinc ions of the co-catalytic unit. Chevrier B, D'Orchymont H, Schalk C, Tarnus C, Moras D. Eur J Biochem 237 393-398 (1996)
  21. Synergistic anti-human immunodeficiency virus type 1 effect of hydroxamate compounds with 2',3'-dideoxyinosine in infected resting human lymphocytes. Malley SD, Grange JM, Hamedi-Sangsari F, Vila JR. Proc Natl Acad Sci U S A 91 11017-11021 (1994)
  22. Structure and stability of thermophilic enzymes. Studies on thermolysin. Fontana A. Biophys Chem 29 181-193 (1988)
  23. Crystallographic structural analysis of phosphoramidates as inhibitors and transition-state analogs of thermolysin. Tronrud DE, Monzingo AF, Matthews BW. Eur J Biochem 157 261-268 (1986)
  24. Evaluation of library ranking efficacy in virtual screening. Kontoyianni M, Sokol GS, McClellan LM. J Comput Chem 26 11-22 (2005)
  25. Experimental and computational mapping of the binding surface of a crystalline protein. English AC, Groom CR, Hubbard RE. Protein Eng 14 47-59 (2001)
  26. A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. Patel Y, Gillet VJ, Bravi G, Leach AR. J Comput Aided Mol Des 16 653-681 (2002)
  27. Bidentate peptides: highly potent new inhibitors of enkephalin degrading enzymes. Bouboutou R, Waksman G, Devin J, Fournié-Zaluski MC, Roques BP. Life Sci 35 1023-1030 (1984)
  28. Substrate specificities and inhibition of two hemorrhagic zinc proteases Ht-c and Ht-d from Crotalus atrox venom. Fox JW, Campbell R, Beggerly L, Bjarnason JB. Eur J Biochem 156 65-72 (1986)
  29. Mechanistic inferences from the binding of ligands to LpxC, a metal-dependent deacetylase. Gennadios HA, Whittington DA, Li X, Fierke CA, Christianson DW. Biochemistry 45 7940-7948 (2006)
  30. The structure of neutral protease from Bacillus cereus at 0.2-nm resolution. Stark W, Pauptit RA, Wilson KS, Jansonius JN. Eur J Biochem 207 781-791 (1992)
  31. Modeling of metal interaction geometries for protein-ligand docking. Seebeck B, Reulecke I, Kämper A, Rarey M. Proteins 71 1237-1254 (2008)
  32. Differences in the structural requirements for selective interaction with neutral metalloendopeptidase (enkephalinase) or angiotensin-converting enzyme. Molecular investigation by use of new thiol inhibitors. Fournie-Zaluski MC, Lucas E, Waksman G, Roques BP. Eur J Biochem 139 267-274 (1984)
  33. Structure of prokaryotic polyamine deacetylase reveals evolutionary functional relationships with eukaryotic histone deacetylases. Lombardi PM, Angell HD, Whittington DA, Flynn EF, Rajashankar KR, Christianson DW. Biochemistry 50 1808-1817 (2011)
  34. Identification of the thyrotropin-releasing-hormone-degrading ectoenzyme as a metallopeptidase. Czekay G, Bauer K. Biochem J 290 ( Pt 3) 921-926 (1993)
  35. Asp650 is crucial for catalytic activity of neutral endopeptidase 24-11. Le Moual H, Dion N, Roques BP, Crine P, Boileau G. Eur J Biochem 221 475-480 (1994)
  36. Modeling of inhibitor-metalloenzyme interactions and selectivity using molecular mechanics grounded in quantum chemistry. Garmer DR, Gresh N, Roques BP. Proteins 31 42-60 (1998)
  37. Entropy as a Driver of Selectivity for Inhibitor Binding to Histone Deacetylase 6. Porter NJ, Wagner FF, Christianson DW. Biochemistry 57 3916-3924 (2018)
  38. Inhibition of metalloproteinases in Bothrops asper venom by endogenous peptides. Francis B, Kaiser II. Toxicon 31 889-899 (1993)
  39. Fitting an inhibitor into the active site of thermolysin: a molecular dynamics case study. Wasserman ZR, Hodge CN. Proteins 24 227-237 (1996)
  40. Thermolysin-catalyzed peptide bond synthesis. Wayne SI, Fruton JS. Proc Natl Acad Sci U S A 80 3241-3244 (1983)
  41. Shapelets: possibilities and limitations of shape-based virtual screening. Proschak E, Rupp M, Derksen S, Schneider G. J Comput Chem 29 108-114 (2008)
  42. Flexible matching of test ligands to a 3D pharmacophore using a molecular superposition force field: comparison of predicted and experimental conformations of inhibitors of three enzymes. McMartin C, Bohacek RS. J Comput Aided Mol Des 9 237-250 (1995)
  43. Amino hydroxamic acids as potent inhibitors of leukotriene A4 hydrolase. Hogg JH, Ollmann IR, Haeggström JZ, Wetterholm A, Samuelsson B, Wong CH. Bioorg Med Chem 3 1405-1415 (1995)
  44. A shape- and chemistry-based docking method and its use in the design of HIV-1 protease inhibitors. DesJarlais RL, Dixon JS. J Comput Aided Mol Des 8 231-242 (1994)
  45. Inhibition of arginine gingipains (RgpB and HRgpA) with benzamidine inhibitors: zinc increases inhibitory potency. Krauser JA, Potempa J, Travis J, Powers JC. Biol Chem 383 1193-1198 (2002)
  46. Peptide hydroxamic acids inhibit skin collagenase. Moore WM, Spilburg CA. Biochem Biophys Res Commun 136 390-395 (1986)
  47. A molecular model for the tumour-associated antigen, p97, suggests a Zn-binding function. Garratt RC, Jhotí H. FEBS Lett 305 55-61 (1992)
  48. Dipeptide-hydroxamates are good inhibitors of the angiotensin I-converting enzyme. Harris RB, Strong PD, Wilson IB. Biochem Biophys Res Commun 116 394-399 (1983)
  49. Amino acid hydroxamates as inhibitors of the human enkephalin-degrading aminopeptidase. Coletti-Previero MA, Crastes de Paulet A, Mattras H, Previero A. Biochem Biophys Res Commun 107 465-469 (1982)
  50. Aminopeptidase yscCo-II: a new cobalt-dependent aminopeptidase from yeast-purification and biochemical characterization. Herrera-Camacho I, Morales-Monterrosas R, Quiróz-Alvarez R. Yeast 16 219-229 (2000)
  51. Antidotes to anthrax lethal factor intoxication. Part 3: Evaluation of core structures and further modifications to the C2-side chain. Jiao GS, Kim S, Moayeri M, Crown D, Thai A, Cregar-Hernandez L, McKasson L, Sankaran B, Lehrer A, Wong T, Johns L, Margosiak SA, Leppla SH, Johnson AT. Bioorg Med Chem Lett 22 2242-2246 (2012)
  52. Fragment-based lead discovery: screening and optimizing fragments for thermolysin inhibition. Englert L, Silber K, Steuber H, Brass S, Over B, Gerber HD, Heine A, Diederich WE, Klebe G. ChemMedChem 5 930-940 (2010)
  53. Design, Synthesis, and Evaluation of Polyamine Deacetylase Inhibitors, and High-Resolution Crystal Structures of Their Complexes with Acetylpolyamine Amidohydrolase. Decroos C, Christianson DW. Biochemistry 54 4692-4703 (2015)
  54. Fluorescence studies on the Ca2+ and Zn2+ binding properties of the alpha-subunit of bovine brain S-100a protein. Leung IK, Mani RS, Kay CM. FEBS Lett 214 35-40 (1987)
  55. High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density. Teplitsky E, Joshi K, Ericson DL, Scalia A, Mullen JD, Sweet RM, Soares AS. J Struct Biol 191 49-58 (2015)
  56. A QSAR study on the inhibition mechanism of matrix metalloproteinase-12 by arylsulfone analogs based on molecular orbital calculations. Hitaoka S, Chuman H, Yoshizawa K. Org Biomol Chem 13 793-806 (2015)
  57. Functional residues at the active site of aminopeptidase N. Helene A, Beaumont A, Roques BP. Eur J Biochem 196 385-393 (1991)
  58. Isolation, characterization and metal-ion-binding properties of the alpha-subunit from S-100a protein. Leung IK, Mani RS, Kay CM. Biochem J 237 757-764 (1986)
  59. The stability of [Zn(NH(3))(4)](2+) in water: A quantum mechanical/molecular mechanical molecular dynamics study. Qaiser Fatmi M, Hofer TS, Rode BM. Phys Chem Chem Phys 12 9713-9718 (2010)
  60. A rapid method for the computation, comparison and display of molecular volumes. Bohacek RS, Guida WC. J Mol Graph 7 113-117 (1989)
  61. Spectral [corrected] studies on the cadmium-ion-binding properties of bovine brain S-100b protein. Donato H, Mani RS, Kay CM. Biochem J 276 ( Pt 1) 13-18 (1991)
  62. Thiol containing compounds and amino acid hydroxamates as reversible synthetic inhibitors of Astacus protease. Wolz RL, Zeggaf C, Stöcker W, Zwilling R. Arch Biochem Biophys 281 275-281 (1990)
  63. Intermediate analogue inhibitors of mandelate racemase: N-Hydroxyformanilide and cupferron. Bourque JR, Burley RK, Bearne SL. Bioorg Med Chem Lett 17 105-108 (2007)
  64. Novel dipeptidyl hydroxamic acids that inhibit human and bacterial dipeptidyl peptidase III. Cvitešić A, Sabljić I, Makarević J, Abramić M. J Enzyme Inhib Med Chem 31 40-45 (2016)
  65. Structural basis for the inhibition of M1 family aminopeptidases by the natural product actinonin: Crystal structure in complex with E. coli aminopeptidase N. Ganji RJ, Reddi R, Gumpena R, Marapaka AK, Arya T, Sankoju P, Bhukya S, Addlagatta A. Protein Sci 24 823-831 (2015)
  66. 3-Amino-2-hydroxy-propionaldehyde and 3-amino-1-hydroxy-propan-2-one derivatives: new classes of aminopeptidase inhibitors. Tarnus C, Rémy JM, d'Orchymont H. Bioorg Med Chem 4 1287-1297 (1996)
  67. Ca2+ and Zn2+-binding properties of nitrated S-100b protein from bovine brain. Mani RS, Kay CM. Biochem J 238 715-719 (1986)
  68. Structural and functional insights into nitrosoglutathione reductase from Chlamydomonas reinhardtii. Tagliani A, Rossi J, Marchand CH, De Mia M, Tedesco D, Gurrieri L, Meloni M, Falini G, Trost P, Lemaire SD, Fermani S, Zaffagnini M. Redox Biol 38 101806 (2021)
  69. A theoretical study of Zn++ interacting with models of ligands present at the thermolysin active site. Giessner-Prettre C, Jacob O. J Comput Aided Mol Des 3 23-37 (1989)
  70. Insights into the anthrax lethal factor-substrate interaction and selectivity using docking and molecular dynamics simulations. Dalkas GA, Papakyriakou A, Vlamis-Gardikas A, Spyroulias GA. Protein Sci 18 1774-1785 (2009)
  71. Solid phase synthesis of peptide hydroxamic acids on poly(ethylene glycol)-based support. Cal M, Jaremko M, Jaremko Ł, Stefanowicz P. J Pept Sci 19 9-15 (2013)
  72. Design and evaluation of inhibitors of enkephalin degrading enzymes. Fournie-Zaluski MC. Neurochem Int 12 375-382 (1988)
  73. Role of proteases in the pathophysiology of cardiac disease. Singh RB, Dandekar SP, Elimban V, Gupta SK, Dhalla NS. Mol Cell Biochem 263 241-256 (2004)
  74. Universal behavior of localization of residue fluctuations in globular proteins. Wu Y, Yuan X, Gao X, Fang H, Zi J. Phys Rev E Stat Nonlin Soft Matter Phys 67 041909 (2003)
  75. A machine learning approach to computer-aided molecular design. Bolis G, Di Pace L, Fabrocini F. J Comput Aided Mol Des 5 617-628 (1991)
  76. Computer automated structure evaluation (CASE): a study of inhibitors of the thermolysin enzyme. Klopman G, Bendale RD. J Theor Biol 136 67-77 (1989)
  77. Coordination of divalent metal cation to amide group to form adduct ion in FAB mass spectrometry: implication of Zn2+ in enzymatic hydrolysis of amide bond. Kobayashi H, Morisaki N, Miyachi H, Hashimoto Y. Chem Pharm Bull (Tokyo) 56 672-676 (2008)
  78. Inhibition of thermolysin by bifunctional N-carboxyalkyl dipeptides. Gray RD, Pierce WM, Harrod JW, Rademacher JM. Arch Biochem Biophys 256 692-698 (1987)
  79. Decoding molecular recognition of inhibitors targeting HDAC2 via molecular dynamics simulations and configurational entropy estimation. Tateing S, Suree N. PLoS One 17 e0273265 (2022)
  80. Modeling the mechanism of peptide cleavage by thermolysin. Hangauer DG, Gund P, Andose JD, Bush BL, Fluder EM, McIntyre EF, Smith GM. Ann N Y Acad Sci 439 124-139 (1985)


Related citations provided by authors (14)

  1. Structure of Thermolysin Refined at 1.6 Angstroms Resolution. Holmes MA, Matthews BW J. Mol. Biol. 160 623- (1982)
  2. Structure of a Mercaptan-Thermolysin Complex Illustrates Mode of Inhibition of Zinc Proteases by Substrate-Analogue Mercaptans. Monzingo AF, Matthews BW Biochemistry 21 3390- (1982)
  3. Binding of the Biproduct Analog L-Benzylsuccinic Acid to Thermolysin Determined by X-Ray Crystallography. Bolognesi MC, Matthews BW J. Biol. Chem. 254 634- (1979)
  4. Comparison of the Structures of Carboxypeptidase a and Thermolysin. Kester WR, Matthews BW J. Biol. Chem. 252 7704- (1977)
  5. A Crystallographic Study of the Complex of Phosphoramidon with Thermolysin. A Model for the Presumed Catalytic Transition State and for the Binding of Extended Substrates. Weaver LH, Kester WR, Matthews BW J. Mol. Biol. 114 119- (1977)
  6. Crystallographic Study of the Binding of Dipeptide Inhibitors to Thermolysin. Implications for the Mechanism of Catalysis. Kester WR, Matthews BW Biochemistry 16 2506- (1977)
  7. Role of Calcium in the Thermal Stability of Thermolysin. Dahlquist FW, Long JW, Bigbee WL Biochemistry 15 1103- (1976)
  8. Evidence of Homologous Relationship between Thermolysin and Neutral Protease a of Bacillus Subtilis. Levy PL, Pangburn MK, Burstein Y, Ericsson LH, Neurath H, Walsh KA Proc. Natl. Acad. Sci. U.S.A. 72 4341- (1975)
  9. The Conformation of Thermolysin. Matthews BW, Weaver LH, Kester WR J. Biol. Chem. 249 8030- (1974)
  10. Binding of Lanthanide Ions to Thermolysin. Matthews BW, Weaver LH Biochemistry 13 1719- (1974)
  11. The Structure of Thermolysin,an Electron Density Map at 2.3 Angstroms Resolution. Colman PM, Jansonius JN, Matthews BW J. Mol. Biol. 70 701- (1972)
  12. Amino-Acid Sequence of Thermolysin. Titani K, Hermodson MA, Ericsson LH, Walsh KA, Neurath H Nature New Biol. 238 35- (1972)
  13. Three Dimensional Structure of Thermolysin. Matthews BW, Jansonius JN, Colman PM, Schoenborn BP, Duporque D Nature New Biol. 238 37- (1972)
  14. Structure of Thermolysin. Matthews BW, Colman PM, Jansonius JN, Titani K, Walsh KA, Neurath H Nature New Biol. 238 41- (1972)