4u8v Citations

Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB.

Abstract

Membrane transporters of the RND superfamily confer multidrug resistance to pathogenic bacteria, and are essential for cholesterol metabolism and embryonic development in humans. We use high-resolution X-ray crystallography and computational methods to delineate the mechanism of the homotrimeric RND-type proton/drug antiporter AcrB, the active component of the major efflux system AcrAB-TolC in Escherichia coli, and one most complex and intriguing membrane transporters known to date. Analysis of wildtype AcrB and four functionally-inactive variants reveals an unprecedented mechanism that involves two remote alternating-access conformational cycles within each protomer, namely one for protons in the transmembrane region and another for drugs in the periplasmic domain, 50 Å apart. Each of these cycles entails two distinct types of collective motions of two structural repeats, coupled by flanking α-helices that project from the membrane. Moreover, we rationalize how the cross-talk among protomers across the trimerization interface might lead to a more kinetically efficient efflux system.

Reviews - 4u8v mentioned but not cited (1)

  1. Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. Kim J, Cater RJ, Choy BC, Mancia F. J Mol Biol 433 167005 (2021)

Articles - 4u8v mentioned but not cited (3)

  1. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. Eicher T, Seeger MA, Anselmi C, Zhou W, Brandstätter L, Verrey F, Diederichs K, Faraldo-Gómez JD, Pos KM. Elife 3 (2014)
  2. Perturbed structural dynamics underlie inhibition and altered efflux of the multidrug resistance pump AcrB. Reading E, Ahdash Z, Fais C, Ricci V, Wang-Kan X, Grimsey E, Stone J, Malloci G, Lau AM, Findlay H, Konijnenberg A, Booth PJ, Ruggerone P, Vargiu AV, Piddock LJV, Politis A. Nat Commun 11 5565 (2020)
  3. Mechanistic Duality of Bacterial Efflux Substrates and Inhibitors: Example of Simple Substituted Cinnamoyl and Naphthyl Amides. D'Cunha N, Moniruzzaman M, Haynes K, Malloci G, Cooper CJ, Margiotta E, Vargiu AV, Uddin MR, Leus IV, Cao F, Parks JM, Rybenkov VV, Ruggerone P, Zgurskaya HI, Walker JK. ACS Infect Dis 7 2650-2665 (2021)


Reviews citing this publication (24)

  1. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Li XZ, Plésiat P, Nikaido H. Clin Microbiol Rev 28 337-418 (2015)
  2. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. Nat Rev Microbiol 13 343-359 (2015)
  3. Multidrug efflux pumps: structure, function and regulation. Du D, Wang-Kan X, Neuberger A, van Veen HW, Pos KM, Piddock LJV, Luisi BF. Nat Rev Microbiol 16 523-539 (2018)
  4. Recent advances toward a molecular mechanism of efflux pump inhibition. Opperman TJ, Nguyen ST. Front Microbiol 6 421 (2015)
  5. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Spengler G, Kincses A, Gajdács M, Amaral L. Molecules 22 E468 (2017)
  6. Structural basis of RND-type multidrug exporters. Yamaguchi A, Nakashima R, Sakurai K. Front Microbiol 6 327 (2015)
  7. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Dreier J, Ruggerone P. Front Microbiol 6 660 (2015)
  8. The diverse family of MmpL transporters in mycobacteria: from regulation to antimicrobial developments. Viljoen A, Dubois V, Girard-Misguich F, Blaise M, Herrmann JL, Kremer L. Mol Microbiol 104 889-904 (2017)
  9. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Chem Rev 121 5479-5596 (2021)
  10. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies. Symmons MF, Marshall RL, Bavro VN. Front Microbiol 6 513 (2015)
  11. Mechanism of coupling drug transport reactions located in two different membranes. Zgurskaya HI, Weeks JW, Ntreh AT, Nickels LM, Wolloscheck D. Front Microbiol 6 100 (2015)
  12. The ins and outs of vesicular monoamine transporters. Yaffe D, Forrest LR, Schuldiner S. J Gen Physiol 150 671-682 (2018)
  13. Ever-Adapting RND Efflux Pumps in Gram-Negative Multidrug-Resistant Pathogens: A Race against Time. Zwama M, Nishino K. Antibiotics (Basel) 10 774 (2021)
  14. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Klenotic PA, Moseng MA, Morgan CE, Yu EW. Chem Rev 121 5378-5416 (2021)
  15. The hydrophobic trap-the Achilles heel of RND efflux pumps. Aron Z, Opperman TJ. Res Microbiol 169 393-400 (2018)
  16. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Chem Rev 121 5124-5157 (2021)
  17. Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Compagne N, Vieira Da Cruz A, Müller RT, Hartkoorn RC, Flipo M, Pos KM. Antibiotics (Basel) 12 180 (2023)
  18. Drug Efflux Pump Inhibitors: A Promising Approach to Counter Multidrug Resistance in Gram-Negative Pathogens by Targeting AcrB Protein from AcrAB-TolC Multidrug Efflux Pump from Escherichia coli. Alenazy R. Biology (Basel) 11 1328 (2022)
  19. Recent paradigm shift in the assembly of bacterial tripartite efflux pumps and the type I secretion system. Jo I, Kim JS, Xu Y, Hyun J, Lee K, Ha NC. J Microbiol 57 185-194 (2019)
  20. [Antibiotic transport and membrane permeability: new insights to fight bacterial resistance]. Pagès JM. Biol Aujourdhui 211 149-154 (2017)
  21. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Microbiology (Reading) 169 (2023)
  22. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. Jang S. BMB Rep 56 326-334 (2023)
  23. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antibiotics (Basel) 12 965 (2023)
  24. The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Chetri S. Front Microbiol 14 1149418 (2023)

Articles citing this publication (55)

  1. Structural Insights into the Niemann-Pick C1 (NPC1)-Mediated Cholesterol Transfer and Ebola Infection. Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, Huang W, Zhao X, Wang X, Wang P, Shi Y, Gao GF, Zhou Q, Yan N. Cell 165 1467-1478 (2016)
  2. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du D. Elife 6 e24905 (2017)
  3. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Masi M, Réfregiers M, Pos KM, Pagès JM. Nat Microbiol 2 17001 (2017)
  4. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim HS, Ding X, Ornik AR, Ruggerone P, Bowlin TL, Nikaido H, Pos KM, Opperman TJ. Proc Natl Acad Sci U S A 113 3509-3514 (2016)
  5. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Chem Rev 119 5607-5774 (2019)
  6. Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria. Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI. mBio 8 e01172-17 (2017)
  7. Tripartite assembly of RND multidrug efflux pumps. Daury L, Orange F, Taveau JC, Verchère A, Monlezun L, Gounou C, Marreddy RK, Picard M, Broutin I, Pos KM, Lambert O. Nat Commun 7 10731 (2016)
  8. Insights into the smooth-to-rough transitioning in Mycobacterium bolletii unravels a functional Tyr residue conserved in all mycobacterial MmpL family members. Bernut A, Viljoen A, Dupont C, Sapriel G, Blaise M, Bouchier C, Brosch R, de Chastellier C, Herrmann JL, Kremer L. Mol Microbiol 99 866-883 (2016)
  9. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium. Wang-Kan X, Blair JMA, Chirullo B, Betts J, La Ragione RM, Ivens A, Ricci V, Opperman TJ, Piddock LJV. mBio 8 e00968-17 (2017)
  10. Structural insights into the mechanism of activation of the TRPV1 channel by a membrane-bound tarantula toxin. Bae C, Anselmi C, Kalia J, Jara-Oseguera A, Schwieters CD, Krepkiy D, Won Lee C, Kim EH, Kim JI, Faraldo-Gómez JD, Swartz KJ. Elife 5 e11273 (2016)
  11. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Su CC, Yin L, Kumar N, Dai L, Radhakrishnan A, Bolla JR, Lei HT, Chou TH, Delmar JA, Rajashankar KR, Zhang Q, Shin YK, Yu EW. Nat Commun 8 171 (2017)
  12. Crystal structure of tripartite-type ABC transporter MacB from Acinetobacter baumannii. Okada U, Yamashita E, Neuberger A, Morimoto M, van Veen HW, Murakami S. Nat Commun 8 1336 (2017)
  13. Chlorpromazine and Amitriptyline Are Substrates and Inhibitors of the AcrB Multidrug Efflux Pump. Grimsey EM, Fais C, Marshall RL, Ricci V, Ciusa ML, Stone JW, Ivens A, Malloci G, Ruggerone P, Vargiu AV, Piddock LJV. mBio 11 e00465-20 (2020)
  14. Molecular Rationale behind the Differential Substrate Specificity of Bacterial RND Multi-Drug Transporters. Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Sci Rep 7 8075 (2017)
  15. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB. Oswald C, Tam HK, Pos KM. Nat Commun 7 13819 (2016)
  16. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. Istvan ES, Das S, Bhatnagar S, Beck JR, Owen E, Llinas M, Ganesan SM, Niles JC, Winzeler E, Vaidya AB, Goldberg DE. Elife 8 e40529 (2019)
  17. Binding and Transport of Carboxylated Drugs by the Multidrug Transporter AcrB. Tam HK, Malviya VN, Foong WE, Herrmann A, Malloci G, Ruggerone P, Vargiu AV, Pos KM. J Mol Biol 432 861-877 (2020)
  18. Hydrogen-deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter. Jia R, Martens C, Shekhar M, Pant S, Pellowe GA, Lau AM, Findlay HE, Harris NJ, Tajkhorshid E, Booth PJ, Politis A. Nat Commun 11 6162 (2020)
  19. Inter-membrane association of the Sec and BAM translocons for bacterial outer-membrane biogenesis. Alvira S, Watkins DW, Troman L, Allen WJ, Lorriman JS, Degliesposti G, Cohen EJ, Beeby M, Daum B, Gold VA, Skehel JM, Collinson I. Elife 9 e60669 (2020)
  20. ATP-dependent substrate transport by the ABC transporter MsbA is proton-coupled. Singh H, Velamakanni S, Deery MJ, Howard J, Wei SL, van Veen HW. Nat Commun 7 12387 (2016)
  21. Allosteric drug transport mechanism of multidrug transporter AcrB. Tam HK, Foong WE, Oswald C, Herrmann A, Zeng H, Pos KM. Nat Commun 12 3889 (2021)
  22. Energetics and conformational pathways of functional rotation in the multidrug transporter AcrB. Matsunaga Y, Yamane T, Terada T, Moritsugu K, Fujisaki H, Murakami S, Ikeguchi M, Kidera A. Elife 7 e31715 (2018)
  23. Identification of binding residues between periplasmic adapter protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance. McNeil HE, Alav I, Torres RC, Rossiter AE, Laycock E, Legood S, Kaur I, Davies M, Wand M, Webber MA, Bavro VN, Blair JMA. PLoS Pathog 15 e1008101 (2019)
  24. Molecular Determinants of the Promiscuity of MexB and MexY Multidrug Transporters of Pseudomonas aeruginosa. Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Front Microbiol 9 1144 (2018)
  25. Cryo-EM Structure and Molecular Dynamics Analysis of the Fluoroquinolone Resistant Mutant of the AcrB Transporter from Salmonella. Johnson RM, Fais C, Parmar M, Cheruvara H, Marshall RL, Hesketh SJ, Feasey MC, Ruggerone P, Vargiu AV, Postis VLG, Muench SP, Bavro VN. Microorganisms 8 E943 (2020)
  26. Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps. Plé C, Tam HK, Vieira Da Cruz A, Compagne N, Jiménez-Castellanos JC, Müller RT, Pradel E, Foong WE, Malloci G, Ballée A, Kirchner MA, Moshfegh P, Herledan A, Herrmann A, Deprez B, Willand N, Vargiu AV, Pos KM, Flipo M, Hartkoorn RC. Nat Commun 13 115 (2022)
  27. AcrB-AcrA Fusion Proteins That Act as Multidrug Efflux Transporters. Hayashi K, Nakashima R, Sakurai K, Kitagawa K, Yamasaki S, Nishino K, Yamaguchi A. J Bacteriol 198 332-342 (2016)
  28. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Zgurskaya HI, Walker JK, Parks JM, Rybenkov VV. Acc Chem Res 54 930-939 (2021)
  29. Structure and mechanism of the ATP synthase membrane motor inferred from quantitative integrative modeling. Leone V, Faraldo-Gómez JD. J Gen Physiol 148 441-457 (2016)
  30. Structural and functional analysis of the promiscuous AcrB and AdeB efflux pumps suggests different drug binding mechanisms. Ornik-Cha A, Wilhelm J, Kobylka J, Sjuts H, Vargiu AV, Malloci G, Reitz J, Seybert A, Frangakis AS, Pos KM. Nat Commun 12 6919 (2021)
  31. DHHC20 Palmitoyl-Transferase Reshapes the Membrane to Foster Catalysis. Stix R, Song J, Banerjee A, Faraldo-Gómez JD. Biophys J 118 980-988 (2020)
  32. Hoisting-Loop in Bacterial Multidrug Exporter AcrB Is a Highly Flexible Hinge That Enables the Large Motion of the Subdomains. Zwama M, Hayashi K, Sakurai K, Nakashima R, Kitagawa K, Nishino K, Yamaguchi A. Front Microbiol 8 2095 (2017)
  33. Mutations in the TolC Periplasmic Domain Affect Substrate Specificity of the AcrAB-TolC Pump. Marshall RL, Bavro VN. Front Mol Biosci 7 166 (2020)
  34. Proton transfer activity of the reconstituted Mycobacterium tuberculosis MmpL3 is modulated by substrate mimics and inhibitors. Stevens CM, Babii SO, Pandya AN, Li W, Li Y, Mehla J, Scott R, Hegde P, Prathipati PK, Acharya A, Liu J, Gumbart JC, North J, Jackson M, Zgurskaya HI. Proc Natl Acad Sci U S A 119 e2113963119 (2022)
  35. Reversal of the Drug Binding Pocket Defects of the AcrB Multidrug Efflux Pump Protein of Escherichia coli. Soparkar K, Kinana AD, Weeks JW, Morrison KD, Nikaido H, Misra R. J Bacteriol 197 3255-3264 (2015)
  36. Energy coupling mechanisms of AcrB-like RND transporters. Zhang XC, Liu M, Han L. Biophys Rep 3 73-84 (2017)
  37. Molecular Interactions of Carbapenem Antibiotics with the Multidrug Efflux Transporter AcrB of Escherichia coli. Atzori A, Malloci G, Cardamone F, Bosin A, Vargiu AV, Ruggerone P. Int J Mol Sci 21 E860 (2020)
  38. Relocation of active site carboxylates in major facilitator superfamily multidrug transporter LmrP reveals plasticity in proton interactions. Nair AV, Singh H, Raturi S, Neuberger A, Tong Z, Ding N, Agboh K, van Veen HW. Sci Rep 6 38052 (2016)
  39. Repressive mutations restore function-loss caused by the disruption of trimerization in Escherichia coli multidrug transporter AcrB. Wang Z, Zhong M, Lu W, Chai Q, Wei Y. Front Microbiol 6 4 (2015)
  40. Substrate-dependent transport mechanism in AcrB of multidrug resistant bacteria. Jewel Y, Van Dinh Q, Liu J, Dutta P. Proteins 88 853-864 (2020)
  41. A "Drug Sweeping" State of the TriABC Triclosan Efflux Pump from Pseudomonas aeruginosa. Fabre L, Ntreh AT, Yazidi A, Leus IV, Weeks JW, Bhattacharyya S, Ruickoldt J, Rouiller I, Zgurskaya HI, Sygusch J. Structure 29 261-274.e6 (2021)
  42. A Model for Allosteric Communication in Drug Transport by the AcrAB-TolC Tripartite Efflux Pump. Webber A, Ratnaweera M, Harris A, Luisi BF, Ntsogo Enguéné VY. Antibiotics (Basel) 11 52 (2022)
  43. Bivalent recognition of fatty acyl-CoA by a human integral membrane palmitoyltransferase. Lee CJ, Stix R, Rana MS, Shikwana F, Murphy RE, Ghirlando R, Faraldo-Gómez JD, Banerjee A. Proc Natl Acad Sci U S A 119 e2022050119 (2022)
  44. Letter Energy-coupling mechanism of the multidrug resistance transporter AcrB: Evidence for membrane potential-driving hypothesis through mutagenic analysis. Liu M, Zhang XC. Protein Cell 8 623-627 (2017)
  45. Cellular Growth Arrest and Efflux Pumps Are Associated With Antibiotic Persisters in Streptococcus pyogenes Induced in Biofilm-Like Environments. Martini CL, Coronado AZ, Melo MCN, Gobbi CN, Lopez ÚS, de Mattos MC, Amorim TT, Botelho AMN, Vasconcelos ATR, Almeida LGP, Planet PJ, Zingali RB, Figueiredo AMS, Ferreira-Carvalho BT. Front Microbiol 12 716628 (2021)
  46. Common recognition topology of mex transporters of Pseudomonas aeruginosa revealed by molecular modelling. Catte A, K Ramaswamy V, Vargiu AV, Malloci G, Bosin A, Ruggerone P. Front Pharmacol 13 1021916 (2022)
  47. Insight into the AcrAB-TolC Complex Assembly Process Learned from Competition Studies. Rajapaksha P, Ojo I, Yang L, Pandeya A, Abeywansha T, Wei Y. Antibiotics (Basel) 10 830 (2021)
  48. Probing the Dynamics of AcrB Through Disulfide Bond Formation. Rajapaksha P, Pandeya A, Wei Y. ACS Omega 5 21844-21852 (2020)
  49. Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na+ in ion-coupled drug efflux. Castellano S, Claxton DP, Ficici E, Kusakizako T, Stix R, Zhou W, Nureki O, Mchaourab HS, Faraldo-Gómez JD. J Biol Chem 296 100262 (2021)
  50. Insights into substrate transport and water permeation in the mycobacterial transporter MmpL3. Li Y, Acharya A, Yang L, Liu J, Tajkhorshid E, Zgurskaya HI, Jackson M, Gumbart JC. Biophys J 122 2342-2352 (2023)
  51. Unconventional Coupling between Ligand Recognition and Allosteric Control in the Multidrug Resistance Gene Regulator, BmrR. Bachas S, Kohrs B, Wade H. ChemMedChem 12 426-430 (2017)
  52. Evaluation of Catechin Synergistic and Antibacterial Efficacy on Biofilm Formation and acrA Gene Expression of Uropathogenic E. coli Clinical Isolates. Jubair N, R M, Fatima A, Mahdi YK, Abdullah NH. Antibiotics (Basel) 11 1223 (2022)
  53. Crystal structures of multidrug efflux transporters from Burkholderia pseudomallei suggest details of transport mechanism. Kato T, Okada U, Hung LW, Yamashita E, Kim HB, Kim CY, Terwilliger TC, Schweizer HP, Murakami S. Proc Natl Acad Sci U S A 120 e2215072120 (2023)
  54. Inhibition Mechanism of Anti-TB Drug SQ109: Allosteric Inhibition of TMM Translocation of Mycobacterium Tuberculosis MmpL3 Transporter. Carbone J, Paradis NJ, Bennet L, Alesiani MC, Hausman KR, Wu C. J Chem Inf Model 63 5356-5374 (2023)
  55. The energetics and ion coupling of cholesterol transport through Patched1. Ansell TB, Corey RA, Viti LV, Kinnebrew M, Rohatgi R, Siebold C, Sansom MSP. Sci Adv 9 eadh1609 (2023)