4v9b Citations

Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis.

Proc Natl Acad Sci U S A 110 3812-6 (2013)
Cited: 109 times
EuropePMC logo PMID: 23431179

Abstract

Here we present an X-ray crystallography structure of the clinically relevant tigecycline antibiotic bound to the 70S ribosome. Our structural and biochemical analysis indicate that the enhanced potency of tigecycline results from a stacking interaction with nucleobase C1054 within the decoding site of the ribosome. Single-molecule fluorescence resonance energy transfer studies reveal that, during decoding, tigecycline inhibits the initial codon recognition step of tRNA accommodation and prevents rescue by the tetracycline-resistance protein TetM.

Reviews - 4v9b mentioned but not cited (2)

  1. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Annu Rev Biochem 87 451-478 (2018)
  2. Targeting Antibiotic Resistance. Chellat MF, Raguž L, Riedl R. Angew Chem Int Ed Engl 55 6600-6626 (2016)

Articles - 4v9b mentioned but not cited (5)

  1. Sarecycline interferes with tRNA accommodation and tethers mRNA to the 70S ribosome. Batool Z, Lomakin IB, Polikanov YS, Bunick CG. Proc Natl Acad Sci U S A 117 20530-20537 (2020)
  2. Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism. Flygaard RK, Boegholm N, Yusupov M, Jenner LB. Nat Commun 9 4179 (2018)
  3. Structure of the 70S Ribosome from the Human Pathogen Acinetobacter baumannii in Complex with Clinically Relevant Antibiotics. Nicholson D, Edwards TA, O'Neill AJ, Ranson NA. Structure 28 1087-1100.e3 (2020)
  4. Structural conservation of antibiotic interaction with ribosomes. Paternoga H, Crowe-McAuliffe C, Bock LV, Koller TO, Morici M, Beckert B, Myasnikov AG, Grubmüller H, Nováček J, Wilson DN. Nat Struct Mol Biol 30 1380-1392 (2023)
  5. Antibiotic Resistance Risk with Oral Tetracycline Treatment of Acne Vulgaris. Swallow MA, Fan R, Cohen JM, Bunick CG. Antibiotics (Basel) 11 1032 (2022)


Reviews citing this publication (26)

  1. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Wilson DN. Nat Rev Microbiol 12 35-48 (2014)
  2. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. Foster TJ. FEMS Microbiol Rev 41 430-449 (2017)
  3. Tetracycline Antibiotics and Resistance. Grossman TH. Cold Spring Harb Perspect Med 6 a025387 (2016)
  4. Prospects for new antibiotics: a molecule-centered perspective. Walsh CT, Wencewicz TA. J Antibiot (Tokyo) 67 7-22 (2014)
  5. The bacterial translation stress response. Starosta AL, Lassak J, Jung K, Wilson DN. FEMS Microbiol Rev 38 1172-1201 (2014)
  6. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F. Eur J Clin Microbiol Infect Dis 41 1003-1022 (2022)
  7. Target protection as a key antibiotic resistance mechanism. Wilson DN, Hauryliuk V, Atkinson GC, O'Neill AJ. Nat Rev Microbiol 18 637-648 (2020)
  8. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Arenz S, Wilson DN. Cold Spring Harb Perspect Med 6 a025361 (2016)
  9. Pharmacological advances in mitochondrial therapy. Singh A, Faccenda D, Campanella M. EBioMedicine 65 103244 (2021)
  10. Tetracycline-Inactivating Enzymes. Markley JL, Wencewicz TA. Front Microbiol 9 1058 (2018)
  11. Ribosome biogenesis in disease: new players and therapeutic targets. Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Signal Transduct Target Ther 8 15 (2023)
  12. Crossroads of Antibiotic Resistance and Biosynthesis. Wencewicz TA. J Mol Biol 431 3370-3399 (2019)
  13. The Development of Third-Generation Tetracycline Antibiotics and New Perspectives. Rusu A, Buta EL. Pharmaceutics 13 2085 (2021)
  14. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Arenz S, Wilson DN. Mol Cell 61 3-14 (2016)
  15. Development of a platform for the discovery and practical synthesis of new tetracycline antibiotics. Liu F, Myers AG. Curr Opin Chem Biol 32 48-57 (2016)
  16. Biological Functions and Molecular Mechanisms of Antibiotic Tigecycline in the Treatment of Cancers. Dong Z, Abbas MN, Kausar S, Yang J, Li L, Tan L, Cui H. Int J Mol Sci 20 E3577 (2019)
  17. Structural Basis for Ribosome Rescue in Bacteria. Huter P, Müller C, Arenz S, Beckert B, Wilson DN. Trends Biochem Sci 42 669-680 (2017)
  18. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. Dmitriev SE, Vladimirov DO, Lashkevich KA. Biochemistry (Mosc) 85 1389-1421 (2020)
  19. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Robertsen HL, Musiol-Kroll EM. Antibiotics (Basel) 8 E157 (2019)
  20. Chelation in Antibacterial Drugs: From Nitroxoline to Cefiderocol and Beyond. Repac Antić D, Parčina M, Gobin I, Petković Didović M. Antibiotics (Basel) 11 1105 (2022)
  21. Acinetobacter baumannii: an evolving and cunning opponent. Shi J, Cheng J, Liu S, Zhu Y, Zhu M. Front Microbiol 15 1332108 (2024)
  22. Resistance mechanisms of tigecycline in Acinetobacter baumannii. Sun C, Yu Y, Hua X. Front Cell Infect Microbiol 13 1141490 (2023)
  23. Ribosome Protection Proteins-"New" Players in the Global Arms Race with Antibiotic-Resistant Pathogens. Ero R, Yan XF, Gao YG. Int J Mol Sci 22 5356 (2021)
  24. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Poulton NC, Rock JM. Front Cell Infect Microbiol 12 997283 (2022)
  25. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Korczak L, Majewski P, Iwaniuk D, Sacha P, Matulewicz M, Wieczorek P, Majewska P, Wieczorek A, Radziwon P, Tryniszewska E. Front Cell Infect Microbiol 14 1289396 (2024)
  26. Hibernating ribosomes as drug targets? Ekemezie CL, Melnikov SV. Front Microbiol 15 1436579 (2024)

Articles citing this publication (76)

  1. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Juette MF, Terry DS, Wasserman MR, Altman RB, Zhou Z, Zhao H, Blanchard SC. Nat Methods 13 341-344 (2016)
  2. High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress. Wu CC, Zinshteyn B, Wehner KA, Green R. Mol Cell 73 959-970.e5 (2019)
  3. The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Seefeldt AC, Nguyen F, Antunes S, Pérébaskine N, Graf M, Arenz S, Inampudi KK, Douat C, Guichard G, Wilson DN, Innis CA. Nat Struct Mol Biol 22 470-475 (2015)
  4. Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance. Linkevicius M, Sandegren L, Andersson DI. Antimicrob Agents Chemother 60 789-796 (2016)
  5. Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Draper MP, Weir S, Macone A, Donatelli J, Trieber CA, Tanaka SK, Levy SB. Antimicrob Agents Chemother 58 1279-1283 (2014)
  6. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Li S, Poulton NC, Chang JS, Azadian ZA, DeJesus MA, Ruecker N, Zimmerman MD, Eckartt KA, Bosch B, Engelhart CA, Sullivan DF, Gengenbacher M, Dartois VA, Schnappinger D, Rock JM. Nat Microbiol 7 766-779 (2022)
  7. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Villa L, Feudi C, Fortini D, García-Fernández A, Carattoli A. Antimicrob Agents Chemother 58 1707-1712 (2014)
  8. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility. Beabout K, Hammerstrom TG, Perez AM, Magalhães BF, Prater AG, Clements TP, Arias CA, Saxer G, Shamoo Y. Antimicrob Agents Chemother 59 5561-5566 (2015)
  9. Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype. Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Thibado JK, Vincent CT, Blanchard SC. Cell Rep 25 236-248.e6 (2018)
  10. Mechanisms of ribosome stalling by SecM at multiple elongation steps. Zhang J, Pan X, Yan K, Sun S, Gao N, Sui SF. Elife 4 e09684 (2015)
  11. Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. He F, Fu Y, Chen Q, Ruan Z, Hua X, Zhou H, Yu Y. PLoS One 10 e0119064 (2015)
  12. Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. Linkevicius M, Sandegren L, Andersson DI. J Antimicrob Chemother 68 2809-2819 (2013)
  13. Differential contribution of the mitochondrial translation pathway to the survival of diffuse large B-cell lymphoma subsets. Norberg E, Lako A, Chen PH, Stanley IA, Zhou F, Ficarro SB, Chapuy B, Chen L, Rodig S, Shin D, Choi DW, Lee S, Shipp MA, Marto JA, Danial NN. Cell Death Differ 24 251-262 (2017)
  14. Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF. Khusainov I, Vicens Q, Ayupov R, Usachev K, Myasnikov A, Simonetti A, Validov S, Kieffer B, Yusupova G, Yusupova G, Yusupov M, Hashem Y. EMBO J 36 2073-2087 (2017)
  15. The Rapid Emergence of Tigecycline Resistance in blaKPC-2 Harboring Klebsiella pneumoniae, as Mediated in Vivo by Mutation in tetA During Tigecycline Treatment. Du X, He F, Shi Q, Zhao F, Xu J, Fu Y, Yu Y. Front Microbiol 9 648 (2018)
  16. Efflux Pump Overexpression Contributes to Tigecycline Heteroresistance in Salmonella enterica serovar Typhimurium. Chen Y, Hu D, Zhang Q, Liao XP, Liu YH, Sun J. Front Cell Infect Microbiol 7 37 (2017)
  17. Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel. Osterman IA, Wieland M, Maviza TP, Lashkevich KA, Lukianov DA, Komarova ES, Zakalyukina YV, Buschauer R, Shiriaev DI, Leyn SA, Zlamal JE, Biryukov MV, Skvortsov DA, Tashlitsky VN, Polshakov VI, Cheng J, Polikanov YS, Bogdanov AA, Osterman AL, Dmitriev SE, Beckmann R, Dontsova OA, Wilson DN, Sergiev PV. Nat Chem Biol 16 1071-1077 (2020)
  18. Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. Arenz S, Nguyen F, Beckmann R, Wilson DN. Proc Natl Acad Sci U S A 112 5401-5406 (2015)
  19. Negamycin interferes with decoding and translocation by simultaneous interaction with rRNA and tRNA. Polikanov YS, Szal T, Jiang F, Gupta P, Matsuda R, Shiozuka M, Steitz TA, Vázquez-Laslop N, Mankin AS. Mol Cell 56 541-550 (2014)
  20. Genetic diversity and characteristics of high-level tigecycline resistance Tet(X) in Acinetobacter species. Chen C, Cui CY, Yu JJ, He Q, Wu XT, He YZ, Cui ZH, Li C, Jia QL, Shen XG, Sun RY, Wang XR, Wang MG, Tang T, Zhang Y, Liao XP, Kreiswirth BN, Zhou SD, Huang B, Du H, Sun J, Chen L, Liu YH. Genome Med 12 111 (2020)
  21. Tigecycline Heteroresistance and Resistance Mechanism in Clinical Isolates of Acinetobacter baumannii. Jo J, Ko KS. Microbiol Spectr 9 e0101021 (2021)
  22. Step-Wise Increase in Tigecycline Resistance in Klebsiella pneumoniae Associated with Mutations in ramR, lon and rpsJ. Fang L, Chen Q, Shi K, Li X, Shi Q, He F, Zhou J, Yu Y, Hua X. PLoS One 11 e0165019 (2016)
  23. Resistance mutations generate divergent antibiotic susceptibility profiles against translation inhibitors. Cocozaki AI, Altman RB, Huang J, Buurman ET, Kazmirski SL, Doig P, Prince DB, Blanchard SC, Cate JH, Ferguson AD. Proc Natl Acad Sci U S A 113 8188-8193 (2016)
  24. Global transcriptional response of Acinetobacter baumannii to a subinhibitory concentration of tigecycline. Hua X, Chen Q, Li X, Yu Y. Int J Antimicrob Agents 44 337-344 (2014)
  25. Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA. Lupien A, Gingras H, Leprohon P, Ouellette M. J Antimicrob Chemother 70 2973-2980 (2015)
  26. Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed. Lyu X, Yang Q, Zhao F, Liu Y. Nucleic Acids Res 49 9404-9423 (2021)
  27. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome. Olivier NB, Altman RB, Noeske J, Basarab GS, Code E, Ferguson AD, Gao N, Huang J, Juette MF, Livchak S, Miller MD, Prince DB, Cate JH, Buurman ET, Blanchard SC. Proc Natl Acad Sci U S A 111 16274-16279 (2014)
  28. Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome. Schedlbauer A, Kaminishi T, Ochoa-Lizarralde B, Dhimole N, Zhou S, López-Alonso JP, Connell SR, Fucini P. Antimicrob Agents Chemother 59 2849-2854 (2015)
  29. A novel formulation of tigecycline has enhanced stability and sustained antibacterial and antileukemic activity. Jitkova Y, Gronda M, Hurren R, Wang X, Goard CA, Jhas B, Schimmer AD. PLoS One 9 e95281 (2014)
  30. Rampant Parasexuality Evolves in a Hospital Pathogen during Antibiotic Selection. Beabout K, Hammerstrom TG, Wang TT, Bhatty M, Christie PJ, Saxer G, Shamoo Y. Mol Biol Evol 32 2585-2597 (2015)
  31. The Novel Aminomethylcycline Omadacycline Has High Specificity for the Primary Tetracycline-Binding Site on the Bacterial Ribosome. Heidrich CG, Mitova S, Schedlbauer A, Connell SR, Fucini P, Steenbergen JN, Berens C. Antibiotics (Basel) 5 E32 (2016)
  32. Total synthesis of viridicatumtoxin B and analogues thereof: strategy evolution, structural revision, and biological evaluation. Nicolaou KC, Hale CR, Nilewski C, Ioannidou HA, ElMarrouni A, Nilewski LG, Beabout K, Wang TT, Shamoo Y. J Am Chem Soc 136 12137-12160 (2014)
  33. Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and rrf. Hua X, He J, Wang J, Zhang L, Zhang L, Xu Q, Shi K, Leptihn S, Shi Y, Fu X, Zhu P, Higgins PG, Yu Y. Emerg Microbes Infect 10 1404-1417 (2021)
  34. Combinatorial Effect of ARTP Mutagenesis and Ribosome Engineering on an Industrial Strain of Streptomyces albus S12 for Enhanced Biosynthesis of Salinomycin. Zhang K, Mohsin A, Dai Y, Chen Z, Zhuang Y, Chu J, Guo M. Front Bioeng Biotechnol 7 212 (2019)
  35. Trueperella pyogenes isolated from dairy cows with endometritis in Inner Mongolia, China: Tetracycline susceptibility and tetracycline-resistance gene distribution. Zhang D, Zhao J, Wang Q, Liu Y, Tian C, Zhao Y, Yu L, Liu M. Microb Pathog 105 51-56 (2017)
  36. Yeast translation elongation factor eEF3 promotes late stages of tRNA translocation. Ranjan N, Pochopien AA, Chih-Chien Wu C, Beckert B, Blanchet S, Green R, V Rodnina M, Wilson DN. EMBO J 40 e106449 (2021)
  37. An Analysis of the Novel Fluorocycline TP-6076 Bound to Both the Ribosome and Multidrug Efflux Pump AdeJ from Acinetobacter baumannii. Morgan CE, Zhang Z, Bonomo RA, Yu EW. mBio 13 e0373221 (2021)
  38. Letter Decreased Susceptibility to Tigecycline Mediated by a Mutation in mlaA in Escherichia coli Strains. He F, Xu J, Wang J, Chen Q, Hua X, Fu Y, Yu Y. Antimicrob Agents Chemother 60 7530-7531 (2016)
  39. Differential requirements for P stalk components in activating yeast protein kinase Gcn2 by stalled ribosomes during stress. Gupta R, Hinnebusch AG. Proc Natl Acad Sci U S A 120 e2300521120 (2023)
  40. Genome sequencing and genomic characterization of a tigecycline-resistant Klebsiella pneumoniae strain isolated from the bile samples of a cholangiocarcinoma patient. Zheng B, Li A, Jiang X, Hu X, Yao J, Zhao L, Ji J, Ye M, Xiao Y, Li L. Gut Pathog 6 40 (2014)
  41. In vitro and in vivo anti-malarial activity of tigecycline, a glycylcycline antibiotic, in combination with chloroquine. Sahu R, Walker LA, Tekwani BL. Malar J 13 414 (2014)
  42. Cryo-electron microscopy structure of the 70S ribosome from Enterococcus faecalis. Murphy EL, Singh KV, Avila B, Kleffmann T, Gregory ST, Murray BE, Krause KL, Khayat R, Jogl G. Sci Rep 10 16301 (2020)
  43. The Transcriptomic Signature of Tigecycline in Acinetobacter baumannii. Li L, Hassan KA, Tetu SG, Naidu V, Pokhrel A, Cain AK, Paulsen IT. Front Microbiol 11 565438 (2020)
  44. A Complementary Mechanism of Bacterial mRNA Translation Inhibition by Tetracyclines. Barrenechea V, Vargas-Reyes M, Quiliano M, Milón P. Front Microbiol 12 682682 (2021)
  45. Combination effect of laser diode for photodynamic therapy with doxycycline on a wistar rat model of periodontitis. Astuti SD, Utomo IB, Setiawatie EM, Khasanah M, Purnobasuki H, Arifianto D, Alamsyah KA. BMC Oral Health 21 80 (2021)
  46. Proteomic analysis of Plasmodium falciparum response to isocryptolepine derivative. Rujimongkon K, Mungthin M, Tummatorn J, Ampawong S, Adisakwattana P, Boonyuen U, Reamtong O. PLoS One 14 e0220871 (2019)
  47. Recent Advances in the Rational Design and Optimization of Antibacterial Agents. Jones JA, Virga KG, Gumina G, Hevener KE. Medchemcomm 7 1694-1715 (2016)
  48. Tetracenomycin X sequesters peptidyl-tRNA during translation of QK motifs. Leroy EC, Perry TN, Renault TT, Innis CA. Nat Chem Biol 19 1091-1096 (2023)
  49. Experimental Evolution of Diverse Strains as a Method for the Determination of Biochemical Mechanisms of Action for Novel Pyrrolizidinone Antibiotics. Beabout K, McCurry MD, Mehta H, Shah AA, Pulukuri KK, Rigol S, Wang Y, Nicolaou KC, Shamoo Y. ACS Infect Dis 3 854-865 (2017)
  50. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Nat Commun 14 5582 (2023)
  51. Molecular basis for the emergence of a new hospital endemic tigecycline-resistant Enterococcus faecalis ST103 lineage. Dabul ANG, Avaca-Crusca JS, Navais RB, Merlo TP, Van Tyne D, Gilmore MS, Camargo ILBDC. Infect Genet Evol 67 23-32 (2019)
  52. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. Salam LB. 3 Biotech 10 238 (2020)
  53. Whole-cell modeling of E. coli colonies enables quantification of single-cell heterogeneity in antibiotic responses. Skalnik CJ, Cheah SY, Yang MY, Wolff MB, Spangler RK, Talman L, Morrison JH, Peirce SM, Agmon E, Covert MW. PLoS Comput Biol 19 e1011232 (2023)
  54. Investigations into the Antibacterial Mechanism of Action of Viridicatumtoxins. Li W, Li L, Zhang C, Cai Y, Gao Q, Wang F, Cao Y, Lin J, Li J, Shang Z, Lin W. ACS Infect Dis 6 1759-1769 (2020)
  55. Sequencing analysis of tigecycline resistance among tigecycline non-susceptible in three species of G-ve bacteria isolated from clinical specimens in Baghdad. Khlaif MM, Hussein NH. Mol Biol Rep 49 11811-11820 (2022)
  56. Sustained activation of EGFR-ERK1/2 signaling limits the response to tigecycline-induced mitochondrial respiratory deficiency in liver cancer. Zhou Y, Wang S, Wu W, Ling J, Li H, Jia Q, Zheng J, Zheng X, Yu R, Wu Q, Shi Y, Lieftink C, Beijersbergen RL, Yuan S, Bernards R, Jin H, Qin W. EBioMedicine 87 104397 (2023)
  57. Concentration-Dependent Global Quantitative Proteome Response of Staphylococcus epidermidis RP62A Biofilms to Subinhibitory Tigecycline. Sung K, Park M, Chon J, Kweon O, Khan SA, Shen A, Paredes A. Cells 11 3488 (2022)
  58. Differential Contribution of Protein Factors and 70S Ribosome to Elongation. Paleskava A, Maksimova EM, Vinogradova DS, Kasatsky PS, Kirillov SV, Konevega AL. Int J Mol Sci 22 9614 (2021)
  59. Effects of Ribosomal Protein S10 Flexible Loop Mutations on Tetracycline and Tigecycline Susceptibility of Escherichia coli. Izghirean N, Waidacher C, Kittinger C, Chyba M, Koraimann G, Pertschy B, Zarfel G. Front Microbiol 12 663835 (2021)
  60. Imidazole Derivative As a Novel Translation Inhibitor. Lukianov DA, Buev VS, Ivanenkov YA, Kartsev VG, Skvortsov DA, Osterman IA, Sergiev PV. Acta Naturae 14 71-77 (2022)
  61. Sarecycline inhibits protein translation in Cutibacterium acnes 70S ribosome using a two-site mechanism. Lomakin IB, Devarkar SC, Patel S, Grada A, Bunick CG. Nucleic Acids Res 51 2915-2930 (2023)
  62. Tetracycline does not directly inhibit the function of bacterial elongation factor Tu. Gzyl KE, Wieden HJ. PLoS One 12 e0178523 (2017)
  63. Acinetobacter baumannii Global Clone-Specific Resistomes Explored in Clinical Isolates Recovered from Egypt. Hamed SM, Elkhatib WF, Brangsch H, Gesraha AS, Moustafa S, Khater DF, Pletz MW, Sprague LD, Neubauer H, Wareth G. Antibiotics (Basel) 12 1149 (2023)
  64. Analysis of antibiotic resistance genes in pig feces during the weaning transition using whole metagenome shotgun sequencing. Keum GB, Kim ES, Cho J, Song M, Oh KK, Cho JH, Kim S, Kim H, Kwak J, Doo H, Pandey S, Kim HB, Lee JH. J Anim Sci Technol 65 175-182 (2023)
  65. Bactericidal effect of tetracycline in E. coli strain ED1a may be associated with ribosome dysfunction. Khusainov I, Romanov N, Goemans C, Turoňová B, Zimmerli CE, Welsch S, Langer JD, Typas A, Beck M. Nat Commun 15 4783 (2024)
  66. High-Resolution Ribosome Profiling for Determining Ribosome Functional States During Translation Elongation. Shafieinouri M, Membreno BS, Wu CC. Methods Mol Biol 2428 173-186 (2022)
  67. Crystal structure determination of the halogenase CtcP from Streptomyces aureofaciens. Yin L. Acta Crystallogr F Struct Biol Commun 78 270-275 (2022)
  68. Effect of an Eco-Friendly Cuminaldehyde Guanylhydrazone Disinfectant on Shiga Toxin Production and Global Transcription of Escherichia coli. Wang Y, Hart-Cooper WM, Rasooly R, Carter MQ, Orts WJ, Gu Y, He X. Toxins (Basel) 14 752 (2022)
  69. NMR assignments of the N-terminal domain of Staphylococcus aureus hibernation promoting factor (SaHPF). Usachev KS, Ayupov RK, Validov SZ, Khusainov IS, Yusupov MM. Biomol NMR Assign 12 85-89 (2018)
  70. Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning. Wang K, Romm EL, Kouznetsova VL, Tsigelny IF. Molecules 25 E3886 (2020)
  71. GNN Codon Adjacency Tunes Protein Translation. Sun J, Hwang P, Sakkas ED, Zhou Y, Perez L, Dave I, Kwon JB, McMahon AE, Wichman M, Raval M, Scopino K, Krizanc D, Thayer KM, Weir MP. Int J Mol Sci 25 5914 (2024)
  72. Promoter regulatory mode evolution enhances the high multidrug resistance of tmexCD1-toprJ1. Wang C, Yang J, Xu Z, Lv L, Chen S, Hong M, Liu J-H. mBio 15 e0021824 (2024)
  73. Structural basis for differential inhibition of eukaryotic ribosomes by tigecycline. Li X, Wang M, Denk T, Buschauer R, Li Y, Beckmann R, Cheng J. Nat Commun 15 5481 (2024)
  74. Synthetic macrolides overcoming MLSBK-resistant pathogens. Ma CX, Li Y, Liu WT, Li Y, Zhao F, Lian XT, Ding J, Liu SM, Liu XP, Fan BZ, Liu LY, Xue F, Li J, Zhang JR, Xue Z, Pei XT, Lin JZ, Liang JH. Cell Discov 10 75 (2024)
  75. Tetracycline-modifying enzyme SmTetX from Stenotrophomonas maltophilia. Malý M, Kolenko P, Stránský J, Švecová L, Dušková J, Koval' T, Skálová T, Trundová M, Adámková K, Černý J, Božíková P, Dohnálek J. Acta Crystallogr F Struct Biol Commun 79 180-192 (2023)
  76. The ISVsa3-ORF2-abh-tet(X4) circular intermediate-mediated transmission of tigecycline resistance in Escherichia coli isolates from duck farms. Jiang C, Yang J, Xiao G, Xiao N, Hu J, Yang Y, Sun Z, Li Y. Front Cell Infect Microbiol 14 1444031 (2024)