4v9b Citations

Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis.

Proc Natl Acad Sci U S A 110 3812-6 (2013)
Cited: 109 times
EuropePMC logo PMID: 23431179

Abstract

Here we present an X-ray crystallography structure of the clinically relevant tigecycline antibiotic bound to the 70S ribosome. Our structural and biochemical analysis indicate that the enhanced potency of tigecycline results from a stacking interaction with nucleobase C1054 within the decoding site of the ribosome. Single-molecule fluorescence resonance energy transfer studies reveal that, during decoding, tigecycline inhibits the initial codon recognition step of tRNA accommodation and prevents rescue by the tetracycline-resistance protein TetM.

Reviews - 4v9b mentioned but not cited (2)

  1. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Annu Rev Biochem 87 451-478 (2018)
  2. Targeting Antibiotic Resistance. Chellat MF, Raguž L, Riedl R. Angew Chem Int Ed Engl 55 6600-6626 (2016)

Articles - 4v9b mentioned but not cited (5)



Reviews citing this publication (26)

  1. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Wilson DN. Nat Rev Microbiol 12 35-48 (2014)
  2. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. Foster TJ. FEMS Microbiol Rev 41 430-449 (2017)
  3. Tetracycline Antibiotics and Resistance. Grossman TH. Cold Spring Harb Perspect Med 6 a025387 (2016)
  4. Prospects for new antibiotics: a molecule-centered perspective. Walsh CT, Wencewicz TA. J Antibiot (Tokyo) 67 7-22 (2014)
  5. The bacterial translation stress response. Starosta AL, Lassak J, Jung K, Wilson DN. FEMS Microbiol Rev 38 1172-1201 (2014)
  6. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F. Eur J Clin Microbiol Infect Dis 41 1003-1022 (2022)
  7. Target protection as a key antibiotic resistance mechanism. Wilson DN, Hauryliuk V, Atkinson GC, O'Neill AJ. Nat Rev Microbiol 18 637-648 (2020)
  8. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Arenz S, Wilson DN. Cold Spring Harb Perspect Med 6 a025361 (2016)
  9. Pharmacological advances in mitochondrial therapy. Singh A, Faccenda D, Campanella M. EBioMedicine 65 103244 (2021)
  10. Tetracycline-Inactivating Enzymes. Markley JL, Wencewicz TA. Front Microbiol 9 1058 (2018)
  11. Ribosome biogenesis in disease: new players and therapeutic targets. Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Signal Transduct Target Ther 8 15 (2023)
  12. Crossroads of Antibiotic Resistance and Biosynthesis. Wencewicz TA. J Mol Biol 431 3370-3399 (2019)
  13. The Development of Third-Generation Tetracycline Antibiotics and New Perspectives. Rusu A, Buta EL. Pharmaceutics 13 2085 (2021)
  14. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Arenz S, Wilson DN. Mol Cell 61 3-14 (2016)
  15. Development of a platform for the discovery and practical synthesis of new tetracycline antibiotics. Liu F, Myers AG. Curr Opin Chem Biol 32 48-57 (2016)
  16. Biological Functions and Molecular Mechanisms of Antibiotic Tigecycline in the Treatment of Cancers. Dong Z, Abbas MN, Kausar S, Yang J, Li L, Tan L, Cui H. Int J Mol Sci 20 E3577 (2019)
  17. Structural Basis for Ribosome Rescue in Bacteria. Huter P, Müller C, Arenz S, Beckert B, Wilson DN. Trends Biochem Sci 42 669-680 (2017)
  18. A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. Dmitriev SE, Vladimirov DO, Lashkevich KA. Biochemistry (Mosc) 85 1389-1421 (2020)
  19. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Robertsen HL, Musiol-Kroll EM. Antibiotics (Basel) 8 E157 (2019)
  20. Chelation in Antibacterial Drugs: From Nitroxoline to Cefiderocol and Beyond. Repac Antić D, Parčina M, Gobin I, Petković Didović M. Antibiotics (Basel) 11 1105 (2022)
  21. Acinetobacter baumannii: an evolving and cunning opponent. Shi J, Cheng J, Liu S, Zhu Y, Zhu M. Front Microbiol 15 1332108 (2024)
  22. Resistance mechanisms of tigecycline in Acinetobacter baumannii. Sun C, Yu Y, Hua X. Front Cell Infect Microbiol 13 1141490 (2023)
  23. Ribosome Protection Proteins-"New" Players in the Global Arms Race with Antibiotic-Resistant Pathogens. Ero R, Yan XF, Gao YG. Int J Mol Sci 22 5356 (2021)
  24. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Poulton NC, Rock JM. Front Cell Infect Microbiol 12 997283 (2022)
  25. Molecular mechanisms of tigecycline-resistance among Enterobacterales. Korczak L, Majewski P, Iwaniuk D, Sacha P, Matulewicz M, Wieczorek P, Majewska P, Wieczorek A, Radziwon P, Tryniszewska E. Front Cell Infect Microbiol 14 1289396 (2024)
  26. Hibernating ribosomes as drug targets? Ekemezie CL, Melnikov SV. Front Microbiol 15 1436579 (2024)

Articles citing this publication (76)