4yy6 Citations

A Subset of Human Bromodomains Recognizes Butyryllysine and Crotonyllysine Histone Peptide Modifications.

Structure 23 1801-1814 (2015)
Related entries: 4yy4, 4yyd, 4yyg, 4yyh, 4yyi, 4yyj, 4yyk, 4yym, 4yyn

Cited: 99 times
EuropePMC logo PMID: 26365797

Abstract

Bromodomains are epigenetic readers that are recruited to acetyllysine residues in histone tails. Recent studies have identified non-acetyl acyllysine modifications, raising the possibility that these might be read by bromodomains. Profiling the nearly complete human bromodomain family revealed that while most human bromodomains bind only the shorter acetyl and propionyl marks, the bromodomains of BRD9, CECR2, and the second bromodomain of TAF1 also recognize the longer butyryl mark. In addition, the TAF1 second bromodomain is capable of binding crotonyl marks. None of the human bromodomains tested binds succinyl marks. We characterized structurally and biochemically the binding to different acyl groups, identifying bromodomain residues and structural attributes that contribute to specificity. These studies demonstrate a surprising degree of plasticity in some human bromodomains but no single factor controlling specificity across the family. The identification of candidate butyryl- and crotonyllysine readers supports the idea that these marks could have specific physiological functions.

Reviews citing this publication (39)

  1. Metabolic regulation of gene expression through histone acylations. Sabari BR, Zhang D, Allis CD, Zhao Y. Nat Rev Mol Cell Biol 18 90-101 (2017)
  2. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Fujisawa T, Filippakopoulos P. Nat Rev Mol Cell Biol 18 246-262 (2017)
  3. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Ali I, Conrad RJ, Verdin E, Ott M. Chem Rev 118 1216-1252 (2018)
  4. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Barnes CE, English DM, Cowley SM. Essays Biochem 63 97-107 (2019)
  5. Insights into newly discovered marks and readers of epigenetic information. Andrews FH, Strahl BD, Kutateladze TG. Nat Chem Biol 12 662-668 (2016)
  6. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Trefely S, Lovell CD, Snyder NW, Wellen KE. Mol Metab 38 100941 (2020)
  7. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Sheikh BN, Akhtar A. Nat Rev Genet 20 7-23 (2019)
  8. Epigenomic regulation of oncogenesis by chromatin remodeling. Kumar R, Li DQ, Müller S, Knapp S. Oncogene 35 4423-4436 (2016)
  9. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. Med Res Rev 38 147-200 (2018)
  10. Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function. Dutta A, Abmayr SM, Workman JL. Mol Cell 63 547-552 (2016)
  11. YEATS Domain-A Histone Acylation Reader in Health and Disease. Zhao D, Li Y, Xiong X, Chen Z, Li H. J Mol Biol 429 1994-2002 (2017)
  12. Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism. Nitsch S, Zorro Shahidian L, Schneider R. EMBO Rep 22 e52774 (2021)
  13. The Functions of BET Proteins in Gene Transcription of Biology and Diseases. Cheung KL, Kim C, Zhou MM. Front Mol Biosci 8 728777 (2021)
  14. Biological function and histone recognition of family IV bromodomain-containing proteins. Lloyd JT, Glass KC. J Cell Physiol 233 1877-1886 (2018)
  15. Reading the Combinatorial Histone Language. Su Z, Denu JM. ACS Chem Biol 11 564-574 (2016)
  16. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Galdeano C, Ciulli A. Future Med Chem 8 1655-1680 (2016)
  17. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk. Fellows R, Varga-Weisz P. Mol Metab 38 100925 (2020)
  18. Protein lysine crotonylation: past, present, perspective. Jiang G, Li C, Lu M, Lu K, Li H. Cell Death Dis 12 703 (2021)
  19. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. Itoh Y. Chem Rec 18 1681-1700 (2018)
  20. The Regulation and Function of Histone Crotonylation. Ntorla A, Burgoyne JR. Front Cell Dev Biol 9 624914 (2021)
  21. Unwinding chromatin at the right places: how BAF is targeted to specific genomic locations during development. Ho PJ, Lloyd SM, Bao X. Development 146 dev178780 (2019)
  22. Functional Roles of Bromodomain Proteins in Cancer. Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Cancers (Basel) 13 3606 (2021)
  23. The Contribution of Histone Crotonylation to Tissue Health and Disease: Focus on Kidney Health. Martinez-Moreno JM, Fontecha-Barriuso M, Martín-Sánchez D, Sánchez-Niño MD, Ruiz-Ortega M, Sanz AB, Ortiz A. Front Pharmacol 11 393 (2020)
  24. Chemical probes targeting epigenetic proteins: Applications beyond oncology. Ackloo S, Brown PJ, Müller S. Epigenetics 12 378-400 (2017)
  25. Targeting BRD9 for Cancer Treatment: A New Strategy. Zhu X, Liao Y, Tang L. Onco Targets Ther 13 13191-13200 (2020)
  26. An Expanding Repertoire of Protein Acylations. Xu Y, Shi Z, Bao L. Mol Cell Proteomics 21 100193 (2022)
  27. Structural features and inhibitors of bromodomains. Meslamani J, Smith SG, Sanchez R, Zhou MM. Drug Discov Today Technol 19 3-15 (2016)
  28. Pathways of Non-enzymatic Lysine Acylation. Baldensperger T, Glomb MA. Front Cell Dev Biol 9 664553 (2021)
  29. Small Molecules Targeting the Specific Domains of Histone-Mark Readers in Cancer Therapy. Zhu H, Wei T, Cai Y, Jin J. Molecules 25 E578 (2020)
  30. Emerging roles of non-histone protein crotonylation in biomedicine. Hou JY, Zhou L, Li JL, Wang DP, Cao JM. Cell Biosci 11 101 (2021)
  31. Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification. Fu Y, Yu J, Li F, Ge S. J Exp Clin Cancer Res 41 144 (2022)
  32. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. Quinlan RBA, Brennan PE. RSC Chem Biol 2 759-795 (2021)
  33. Chemical Biology Approaches to Identify and Profile Interactors of Chromatin Modifications. Nickel GA, Diehl KL. ACS Chem Biol 18 1014-1026 (2023)
  34. NUT Is a Driver of p300-Mediated Histone Hyperacetylation: From Spermatogenesis to Cancer. Rousseaux S, Reynoird N, Khochbin S. Cancers (Basel) 14 2234 (2022)
  35. Recent progress and structural analyses of domain-selective BET inhibitors. Divakaran A, Harki DA, Pomerantz WCK. Med Res Rev 43 972-1018 (2023)
  36. Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination. Wang JH, Mao L, Wang J, Zhang X, Wu M, Wen Q, Yu SC. Cell Oncol (Dordr) 46 465-480 (2023)
  37. Catching Nucleosome by Its Decorated Tails Determines Its Functional States. Sehrawat P, Shobhawat R, Kumar A. Front Genet 13 903923 (2022)
  38. Epigenetic meets metabolism: novel vulnerabilities to fight cancer. Scumaci D, Zheng Q. Cell Commun Signal 21 249 (2023)
  39. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases. Xue Q, Yang Y, Li H, Li X, Zou L, Li T, Ma H, Qi H, Wang J, Yu T. Genes Dis 10 2479-2490 (2023)

Articles citing this publication (60)

  1. Molecular Coupling of Histone Crotonylation and Active Transcription by AF9 YEATS Domain. Li Y, Sabari BR, Panchenko T, Wen H, Zhao D, Guan H, Wan L, Huang H, Tang Z, Zhao Y, Roeder RG, Shi X, Allis CD, Li H. Mol Cell 62 181-193 (2016)
  2. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters. Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK, Qi S, Tang Z, Buchou T, Vitte AL, He T, Cheng Z, Montellier E, Gaucher J, Curtet S, Debernardi A, Charbonnier G, Puthier D, Petosa C, Panne D, Rousseaux S, Roeder RG, Zhao Y, Khochbin S. Mol Cell 62 169-180 (2016)
  3. The Taf14 YEATS domain is a reader of histone crotonylation. Andrews FH, Shinsky SA, Shanle EK, Bridgers JB, Gest A, Tsun IK, Krajewski K, Shi X, Strahl BD, Kutateladze TG. Nat Chem Biol 12 396-398 (2016)
  4. Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Xiong X, Panchenko T, Yang S, Zhao S, Yan P, Zhang W, Xie W, Li Y, Zhao Y, Allis CD, Li H. Nat Chem Biol 12 1111-1118 (2016)
  5. Letter YEATS2 is a selective histone crotonylation reader. Zhao D, Guan H, Zhao S, Mi W, Wen H, Li Y, Zhao Y, Allis CD, Shi X, Li H. Cell Res 26 629-632 (2016)
  6. Structure of p300 in complex with acyl-CoA variants. Kaczmarska Z, Ortega E, Goudarzi A, Huang H, Kim S, Márquez JA, Zhao Y, Khochbin S, Panne D. Nat Chem Biol 13 21-29 (2017)
  7. Landscape of the regulatory elements for lysine 2-hydroxyisobutyrylation pathway. Huang H, Luo Z, Qi S, Huang J, Xu P, Wang X, Gao L, Li F, Wang J, Zhao W, Gu W, Chen Z, Dai L, Dai J, Zhao Y. Cell Res 28 111-125 (2018)
  8. Structural Insights into Histone Crotonyl-Lysine Recognition by the AF9 YEATS Domain. Zhang Q, Zeng L, Zhao C, Ju Y, Konuma T, Zhou MM. Structure 24 1606-1612 (2016)
  9. Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Zhang X, Cao R, Niu J, Yang S, Ma H, Zhao S, Li H. Cell Discov 5 35 (2019)
  10. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Mashtalir N, Dao HT, Sankar A, Liu H, Corin AJ, Bagert JD, Ge EJ, D'Avino AR, Filipovski M, Michel BC, Dann GP, Muir TW, Kadoch C. Science 373 306-315 (2021)
  11. BRD9 Inhibition, Alone or in Combination with Cytostatic Compounds as a Therapeutic Approach in Rhabdoid Tumors. Krämer KF, Moreno N, Frühwald MC, Kerl K. Int J Mol Sci 18 E1537 (2017)
  12. Large-scale analysis of water stability in bromodomain binding pockets with grand canonical Monte Carlo. Aldeghi M, Ross GA, Bodkin MJ, Essex JW, Knapp S, Biggin PC. Commun Chem 1 19 (2018)
  13. Expression and epigenomic landscape of the sex chromosomes in mouse post-meiotic male germ cells. Moretti C, Vaiman D, Tores F, Cocquet J. Epigenetics Chromatin 9 47 (2016)
  14. Identification of lysine isobutyrylation as a new histone modification mark. Zhu Z, Han Z, Halabelian L, Yang X, Ding J, Zhang N, Ngo L, Song J, Zeng H, He M, Zhao Y, Arrowsmith CH, Luo M, Bartlett MG, Zheng YG. Nucleic Acids Res 49 177-189 (2021)
  15. Multifaceted Histone H3 Methylation and Phosphorylation Readout by the Plant Homeodomain Finger of Human Nuclear Antigen Sp100C. Zhang X, Zhao D, Xiong X, He Z, Li H. J Biol Chem 291 12786-12798 (2016)
  16. Selective BET bromodomain inhibition as an antifungal therapeutic strategy. Mietton F, Ferri E, Champleboux M, Zala N, Maubon D, Zhou Y, Harbut M, Spittler D, Garnaud C, Courçon M, Chauvel M, d'Enfert C, Kashemirov BA, Hull M, Cornet M, McKenna CE, Govin J, Petosa C. Nat Commun 8 15482 (2017)
  17. YEATS domain: Linking histone crotonylation to gene regulation. Li Y, Zhao D, Chen Z, Li H. Transcription 8 9-14 (2017)
  18. Histone benzoylation serves as an epigenetic mark for DPF and YEATS family proteins. Ren X, Zhou Y, Xue Z, Hao N, Li Y, Guo X, Wang D, Shi X, Li H. Nucleic Acids Res 49 114-126 (2021)
  19. Metabolically Derived Lysine Acylations and Neighboring Modifications Tune the Binding of the BET Bromodomains to Histone H4. Olp MD, Zhu N, Smith BC. Biochemistry 56 5485-5495 (2017)
  20. Multi-omic analysis of gametogenesis reveals a novel signature at the promoters and distal enhancers of active genes. Crespo M, Damont A, Blanco M, Lastrucci E, Kennani SE, Ialy-Radio C, Khattabi LE, Terrier S, Louwagie M, Kieffer-Jaquinod S, Hesse AM, Bruley C, Chantalat S, Govin J, Fenaille F, Battail C, Cocquet J, Pflieger D. Nucleic Acids Res 48 4115-4138 (2020)
  21. Ferroptosis Induction in Multiple Myeloma Cells Triggers DNA Methylation and Histone Modification Changes Associated with Cellular Senescence. Logie E, Van Puyvelde B, Cuypers B, Schepers A, Berghmans H, Verdonck J, Laukens K, Godderis L, Dhaenens M, Deforce D, Vanden Berghe W. Int J Mol Sci 22 12234 (2021)
  22. Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development. El Hadidy N, Uversky VN. Int J Mol Sci 20 E5260 (2019)
  23. Missense variants in TAF1 and developmental phenotypes: challenges of determining pathogenicity. Cheng H, Capponi S, Wakeling E, Marchi E, Li Q, Zhao M, Weng C, Stefan PG, Ahlfors H, Kleyner R, Rope A, Lumaka A, Lukusa P, Devriendt K, Vermeesch J, Posey JE, Palmer EE, Murray L, Leon E, Diaz J, Worgan L, Mallawaarachchi A, Vogt J, de Munnik SA, Dreyer L, Baynam G, Ewans L, Stark Z, Lunke S, Gonçalves AR, Soares G, Oliveira J, Fassi E, Willing M, Waugh JL, Faivre L, Riviere JB, Moutton S, Mohammed S, Payne K, Walsh L, Begtrup A, Guillen Sacoto MJ, Douglas G, Alexander N, Buckley MF, Mark PR, Adès LC, Sandaradura SA, Lupski JR, Roscioli T, Agrawal PB, Kline AD, Deciphering Developmental Disorders Study, Wang K, Timmers HTM, Lyon GJ. Hum Mutat (2019)
  24. Hydrogen-Deuterium Exchange and Hydroxyl Radical Footprinting for Mapping Hydrophobic Interactions of Human Bromodomain with a Small Molecule Inhibitor. Li KS, Schaper Bergman ET, Beno BR, Huang RY, Deyanova E, Chen G, Gross ML. J Am Soc Mass Spectrom 30 2795-2804 (2019)
  25. Molecular structures guide the engineering of chromatin. Tekel SJ, Haynes KA. Nucleic Acids Res 45 7555-7570 (2017)
  26. A trivalent nucleosome interaction by PHIP/BRWD2 is disrupted in neurodevelopmental disorders and cancer. Morgan MAJ, Popova IK, Vaidya A, Burg JM, Marunde MR, Rendleman EJ, Dumar ZJ, Watson R, Meiners MJ, Howard SA, Khalatyan N, Vaughan RM, Rothbart SB, Keogh MC, Shilatifard A. Genes Dev 35 1642-1656 (2021)
  27. BRD9 is a druggable component of interferon-stimulated gene expression and antiviral activity. Börold J, Eletto D, Busnadiego I, Mair NK, Moritz E, Schiefer S, Schmidt N, Petric PP, Wong WW, Schwemmle M, Hale BG. EMBO Rep 22 e52823 (2021)
  28. Discovery of BAZ2A bromodomain ligands. Spiliotopoulos D, Wamhoff EC, Lolli G, Rademacher C, Caflisch A. Eur J Med Chem 139 564-572 (2017)
  29. Disulfide bridge formation influences ligand recognition by the ATAD2 bromodomain. Gay JC, Eckenroth BE, Evans CM, Langini C, Carlson S, Lloyd JT, Caflisch A, Glass KC. Proteins 87 157-167 (2019)
  30. Non-canonical reader modules of BAZ1A promote recovery from DNA damage. Oppikofer M, Sagolla M, Haley B, Zhang HM, Kummerfeld SK, Sudhamsu J, Flynn EM, Bai T, Zhang J, Ciferri C, Cochran AG. Nat Commun 8 862 (2017)
  31. The polar warhead of a TRIM24 bromodomain inhibitor rearranges a water-mediated interaction network. Liu J, Li F, Bao H, Jiang Y, Zhang S, Ma R, Gao J, Wu J, Ruan K. FEBS J 284 1082-1095 (2017)
  32. The Cannabinoid Receptor CB1 Stabilizes Sperm Chromatin Condensation Status During Epididymal Transit by Promoting Disulphide Bond Formation. Chioccarelli T, Manfrevola F, Porreca V, Fasano S, Altucci L, Pierantoni R, Cobellis G. Int J Mol Sci 21 E3117 (2020)
  33. BRD9 inhibition promotes PUMA-dependent apoptosis and augments the effect of imatinib in gastrointestinal stromal tumors. Mu J, Sun X, Zhao Z, Sun H, Sun P. Cell Death Dis 12 962 (2021)
  34. Genome-wide Profiling of Histone Lysine Butyrylation Reveals its Role in the Positive Regulation of Gene Transcription in Rice. Liu S, Liu G, Cheng P, Xue C, Zhou Y, Chen X, Ye L, Qiao Z, Zhang T, Gong Z. Rice (N Y) 12 86 (2019)
  35. NMR Fragment Screening Hit Induces Plasticity of BRD7/9 Bromodomains. Wang N, Li F, Bao H, Li J, Wu J, Ruan K. Chembiochem 17 1456-1463 (2016)
  36. Coordination of Di-Acetylated Histone Ligands by the ATAD2 Bromodomain. Evans CM, Phillips M, Malone KL, Tonelli M, Cornilescu G, Cornilescu C, Holton SJ, Gorjánácz M, Wang L, Carlson S, Gay JC, Nix JC, Demeler B, Markley JL, Glass KC. Int J Mol Sci 22 9128 (2021)
  37. Dual Inhibition of TAF1 and BET Bromodomains from the BI-2536 Kinase Inhibitor Scaffold. Remillard D, Buckley DL, Seo HS, Ferguson FM, Dhe-Paganon S, Bradner JE, Gray NS. ACS Med Chem Lett 10 1443-1449 (2019)
  38. Phf21b imprints the spatiotemporal epigenetic switch essential for neural stem cell differentiation. Basu A, Mestres I, Sahu SK, Tiwari N, Khongwir B, Baumgart J, Singh A, Calegari F, Tiwari VK. Genes Dev 34 1190-1209 (2020)
  39. Structural Insights into the Recognition of Mono- and Diacetylated Histones by the ATAD2B Bromodomain. Lloyd JT, McLaughlin K, Lubula MY, Gay JC, Dest A, Gao C, Phillips M, Tonelli M, Cornilescu G, Marunde MR, Evans CM, Boyson SP, Carlson S, Keogh MC, Markley JL, Frietze S, Glass KC. J Med Chem 63 12799-12813 (2020)
  40. The BRPF1 bromodomain is a molecular reader of di-acetyllysine. Obi JO, Lubula MY, Cornilescu G, Henrickson A, McGuire K, Evans CM, Phillips M, Boyson SP, Demeler B, Markley JL, Glass KC. Curr Res Struct Biol 2 104-115 (2020)
  41. Design, Construction, and Validation of Histone-Binding Effectors in Vitro and in Cells. Tekel SJ, Barrett C, Vargas D, Haynes KA. Biochemistry 57 4707-4716 (2018)
  42. Expanding the Reader Landscape of Histone Acylation. Khan A, Bridgers JB, Strahl BD. Structure 25 571-573 (2017)
  43. Global profiling of regulatory elements in the histone benzoylation pathway. Wang D, Yan F, Wu P, Ge K, Li M, Li T, Gao Y, Peng C, Chen Y. Nat Commun 13 1369 (2022)
  44. Protein dynamics and structural waters in bromodomains. Zhang X, Chen K, Wu YD, Wiest O. PLoS One 12 e0186570 (2017)
  45. Virtual screen to NMR (VS2NMR): Discovery of fragment hits for the CBP bromodomain. Spiliotopoulos D, Zhu J, Wamhoff EC, Deerain N, Marchand JR, Aretz J, Rademacher C, Caflisch A. Bioorg Med Chem Lett 27 2472-2478 (2017)
  46. An Activity-Based Probe Targeting Non-Catalytic, Highly Conserved Amino Acid Residues within Bromodomains. D'Ascenzio M, Pugh KM, Konietzny R, Berridge G, Tallant C, Hashem S, Monteiro O, Thomas JR, Schirle M, Knapp S, Marsden B, Fedorov O, Bountra C, Kessler BM, Brennan PE. Angew Chem Int Ed Engl 58 1007-1012 (2019)
  47. BRD9 controls the oxytocin signaling pathway in gastric cancer via CANA2D4, CALML6, GNAO1, and KCNJ5. Wang Y, Jiang XY, Yu XY. Transl Cancer Res 9 3354-3366 (2020)
  48. Binding Motifs in the CBP Bromodomain: An Analysis of 20 Crystal Structures of Complexes with Small Molecules. Zhu J, Dong J, Batiste L, Unzue A, Dolbois A, Pascanu V, Śledź P, Nevado C, Caflisch A. ACS Med Chem Lett 9 929-934 (2018)
  49. Binding to medium and long chain fatty acyls is a common property of HEAT and ARM repeat modules. Li TM, Coan JP, Krajewski K, Zhang L, Elias JE, Strahl BD, Gozani O, Chua KF. Sci Rep 9 14226 (2019)
  50. Identification of Selective BRD9 Inhibitor via Integrated Computational Approach. Ali MM, Ashraf S, Nure-E-Alam M, Qureshi U, Khan KM, Ul-Haq Z. Int J Mol Sci 23 13513 (2022)
  51. Insights into the Ligand Binding to Bromodomain-Containing Protein 9 (BRD9): A Guide to the Selection of Potential Binders by Computational Methods. De Vita S, Chini MG, Bifulco G, Lauro G. Molecules 26 7192 (2021)
  52. Editorial Reading and Interpreting the Histone Acylation Code. Soffers JH, Li X, Abmayr SM, Workman JL. Genomics Proteomics Bioinformatics 14 329-332 (2016)
  53. Binding specificity and function of the SWI/SNF subunit SMARCA4 bromodomain interaction with acetylated histone H3K14. Enríquez P, Krajewski K, Strahl BD, Rothbart SB, Dowen RH, Rose RB. J Biol Chem 297 101145 (2021)
  54. Characterizing crosstalk in epigenetic signaling to understand disease physiology. Lempiäinen JK, Garcia BA. Biochem J 480 57-85 (2023)
  55. Reevaluation of bromodomain ligands targeting BAZ2A. Cazzanelli G, Vedove AD, Parolin E, D'Agostino VG, Unzue A, Nevado C, Caflisch A, Lolli G. Protein Sci 32 e4752 (2023)
  56. Research Support, Non-U.S. Gov't Targeting the Bromome: are we there yet? Müller S. Future Med Chem 8 1529-1532 (2016)
  57. FGFR2-BRD4 Axis Regulates Transcriptional Networks of Histone 3 Modification and Synergy Between Its Inhibitors and PD-1/PD-L1 in a TNBC Mouse Model. Lei JH, Zhang L, Wang Z, Peltier R, Xie Y, Chen G, Lin S, Miao K, Deng CX, Sun H. Front Immunol 13 861221 (2022)
  58. Molecular Recognition of Methacryllysine and Crotonyllysine by the AF9 YEATS Domain. Bilgin N, Moesgaard L, Rahman MM, Türkmen VA, Kongsted J, Mecinović J. Int J Mol Sci 24 7002 (2023)
  59. Optimization of Naphthyridones into Selective TATA-Binding Protein Associated Factor 1 (TAF1) Bromodomain Inhibitors. Clegg MA, Theodoulou NH, Bamborough P, Chung CW, Craggs PD, Demont EH, Gordon LJ, Liwicki GM, Phillipou A, Tomkinson NCO, Prinjha RK, Humphreys PG. ACS Med Chem Lett 12 1308-1317 (2021)
  60. The short-chain fatty acid crotonate reduces invasive growth and immune escape of Candida albicans by regulating hyphal gene expression. McCrory C, Verma J, Tucey TM, Turner R, Weerasinghe H, Beilharz TH, Traven A. mBio e0260523 (2023)