4yzd Citations

Long-Range Inhibitor-Induced Conformational Regulation of Human IRE1α Endoribonuclease Activity.

Abstract

Activation of the inositol-requiring enzyme-1 alpha (IRE1α) protein caused by endoplasmic reticulum stress results in the homodimerization of the N-terminal endoplasmic reticulum luminal domains, autophosphorylation of the cytoplasmic kinase domains, and conformational changes to the cytoplasmic endoribonuclease (RNase) domains, which render them functional and can lead to the splicing of X-box binding protein 1 (XBP 1) mRNA. Herein, we report the first crystal structures of the cytoplasmic portion of a human phosphorylated IRE1α dimer in complex with (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide, a novel, IRE1α-selective kinase inhibitor, and staurosporine, a broad spectrum kinase inhibitor. (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide inhibits both the kinase and RNase activities of IRE1α. The inhibitor interacts with the catalytic residues Lys599 and Glu612 and displaces the kinase activation loop to the DFG-out conformation. Inactivation of IRE1α RNase activity appears to be caused by a conformational change, whereby the αC helix is displaced, resulting in the rearrangement of the kinase domain-dimer interface and a rotation of the RNase domains away from each other. In contrast, staurosporine binds at the ATP-binding site of IRE1α, resulting in a dimer consistent with RNase active yeast Ire1 dimers. Activation of IRE1α RNase activity appears to be promoted by a network of hydrogen bond interactions between highly conserved residues across the RNase dimer interface that place key catalytic residues poised for reaction. These data implicate that the intermolecular interactions between conserved residues in the RNase domain are required for activity, and that the disruption of these interactions can be achieved pharmacologically by small molecule kinase domain inhibitors.

Reviews - 4yzd mentioned but not cited (1)

  1. HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes. Pillon MC, Gordon J, Frazier MN, Stanley RE. Crit Rev Biochem Mol Biol 56 88-108 (2021)

Articles - 4yzd mentioned but not cited (3)

  1. Activation of the IRE1 RNase through remodeling of the kinase front pocket by ATP-competitive ligands. Ferri E, Le Thomas A, Wallweber HA, Day ES, Walters BT, Kaufman SE, Braun MG, Clark KR, Beresini MH, Mortara K, Chen YA, Canter B, Phung W, Liu PS, Lammens A, Ashkenazi A, Rudolph J, Wang W. Nat Commun 11 6387 (2020)
  2. Triazoloacridone C-1305 impairs XBP1 splicing by acting as a potential IRE1α endoribonuclease inhibitor. Bartoszewska S, Króliczewski J, Crossman DK, Pogorzelska A, Bagiński M, Collawn JF, Bartoszewski R. Cell Mol Biol Lett 26 11 (2021)
  3. Binding Analysis of the Inositol-Requiring Enzyme 1 Kinase Domain. Carlesso A, Chintha C, Gorman AM, Samali A, Eriksson LA. ACS Omega 3 13313-13322 (2018)


Reviews citing this publication (8)

  1. Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. Front Mol Biosci 6 11 (2019)
  2. Pharmacological targeting of endoplasmic reticulum stress in disease. Marciniak SJ, Chambers JE, Ron D. Nat Rev Drug Discov 21 115-140 (2022)
  3. The Unfolded Protein Response in Breast Cancer. McGrath EP, Logue SE, Mnich K, Deegan S, Jäger R, Gorman AM, Samali A. Cancers (Basel) 10 E344 (2018)
  4. Molecular Pathways: Immunosuppressive Roles of IRE1α-XBP1 Signaling in Dendritic Cells of the Tumor Microenvironment. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Clin Cancer Res 22 2121-2126 (2016)
  5. Endoplasmic Reticulum Stress: Implications for Neuropsychiatric Disorders. Muneer A, Shamsher Khan RM. Chonnam Med J 55 8-19 (2019)
  6. Evolution and function of the epithelial cell-specific ER stress sensor IRE1β. Cloots E, Simpson MS, De Nolf C, Lencer WI, Janssens S, Grey MJ. Mucosal Immunol 14 1235-1246 (2021)
  7. Dual RNase activity of IRE1 as a target for anticancer therapies. Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. J Cell Commun Signal (2023)
  8. Targeting Ribonucleases with Small Molecules and Bifunctional Molecules. Borgelt L, Wu P. ACS Chem Biol 18 2101-2113 (2023)

Articles citing this publication (17)

  1. Phosphorylation of IRE1 at S729 regulates RIDD in B cells and antibody production after immunization. Tang CH, Chang S, Paton AW, Paton JC, Gabrilovich DI, Ploegh HL, Del Valle JR, Hu CC. J Cell Biol 217 1739-1755 (2018)
  2. Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis. Raimondi L, De Luca A, Fontana S, Amodio N, Costa V, Carina V, Bellavia D, Raimondo S, Siragusa S, Monteleone F, Alessandro R, Fini M, Giavaresi G. Cancers (Basel) 12 E2167 (2020)
  3. Development of a Chemical Toolset for Studying the Paralog-Specific Function of IRE1. Feldman HC, Vidadala VN, Potter ZE, Papa FR, Backes BJ, Maly DJ. ACS Chem Biol 14 2595-2605 (2019)
  4. Hydroxycarboxylic Acid Receptor 2 Is a Zika Virus Restriction Factor That Can Be Induced by Zika Virus Infection Through the IRE1-XBP1 Pathway. Ma X, Luo X, Zhou S, Huang Y, Chen C, Huang C, Shen L, Zhang P, Liu C. Front Cell Infect Microbiol 9 480 (2019)
  5. Inositol-Requiring Enzyme 1α Promotes Zika Virus Infection through Regulation of Stearoyl Coenzyme A Desaturase 1-Mediated Lipid Metabolism. Huang Y, Lin Q, Huo Z, Chen C, Zhou S, Ma X, Gao H, Lin Y, Li X, He J, Zhang P, Liu C. J Virol 94 e01229-20 (2020)
  6. IRE1α is critical for Kaempferol-induced neuroblastoma differentiation. Abdullah A, Talwar P, d'Hellencourt CL, Ravanan P. FEBS J 286 1375-1392 (2019)
  7. Icariin inhibits the expression of IL-1β, IL-6 and TNF-α induced by OGD/R through the IRE1/XBP1s pathway in microglia. Mo ZT, Zheng J, Liao YL. Pharm Biol 59 1473-1479 (2021)
  8. Binding to an Unusual Inactive Kinase Conformation by Highly Selective Inhibitors of Inositol-Requiring Enzyme 1α Kinase-Endoribonuclease. Colombano G, Caldwell JJ, Matthews TP, Bhatia C, Joshi A, McHardy T, Mok NY, Newbatt Y, Pickard L, Strover J, Hedayat S, Walton MI, Myers SM, Jones AM, Saville H, McAndrew C, Burke R, Eccles SA, Davies FE, Bayliss R, Collins I. J Med Chem 62 2447-2465 (2019)
  9. The epithelial-specific ER stress sensor ERN2/IRE1β enables host-microbiota crosstalk to affect colon goblet cell development. Grey MJ, De Luca H, Ward DV, Kreulen IA, Bugda Gwilt K, Foley SE, Thiagarajah JR, McCormick BA, Turner JR, Lencer WI. J Clin Invest 132 e153519 (2022)
  10. Development of Tumor-Targeting IRE-1 Inhibitors for B-cell Cancer Therapy. Shao A, Xu Q, Spalek WT, Cain CF, Kang CW, Tang CA, Del Valle JR, Hu CA. Mol Cancer Ther 19 2432-2444 (2020)
  11. EI24 promotes cell adaption to ER stress by coordinating IRE1 signaling and calcium homeostasis. Xu Y, Chen J, Chen J, Teng J. EMBO Rep 23 e51679 (2022)
  12. New insights on human IRE1 tetramer structures based on molecular modeling. Carlesso A, Hörberg J, Reymer A, Eriksson LA. Sci Rep 10 17490 (2020)
  13. Sensor dimer disruption as a new mode of action to block the IRE1-mediated unfolded protein response. Amarasinghe KN, Pelizzari-Raymundo D, Carlesso A, Chevet E, Eriksson LA, Jalil Mahdizadeh S. Comput Struct Biotechnol J 20 1584-1592 (2022)
  14. An interdomain helix in IRE1α mediates the conformational change required for the sensor's activation. Ricci D, Tutton S, Marrocco I, Ying M, Blumenthal D, Eletto D, Vargas J, Boyle S, Fazelinia H, Qian L, Suresh K, Taylor D, Paton JC, Paton AW, Tang CA, Hu CA, Radhakrishnan R, Gidalevitz T, Argon Y. J Biol Chem 296 100781 (2021)
  15. Targeting IRE1α-JNK-c-Jun/AP-1-sEH Signaling Pathway Improves Myocardial and Coronary Endothelial Function Following Global Myocardial Ischemia/Reperfusion. Xue HM, Sun WT, Chen HX, He GW, Yang Q. Int J Med Sci 19 1460-1472 (2022)
  16. Discovery of toxoflavin, a potent IRE1α inhibitor acting through structure-dependent oxidative inhibition. Jiang KL, Liu CM, Nie LT, Jiang HN, Xu L, Zhang KZ, Fan LX, Gao AH, Lin LL, Wang XY, Tan MJ, Zhang QQ, Zhou YB, Li J. Acta Pharmacol Sin 44 234-243 (2023)
  17. QM/MM Well-Tempered Metadynamics Study of the Mechanism of XBP1 mRNA Cleavage by Inositol Requiring Enzyme 1α RNase. Mahdizadeh SJ, Pålsson E, Carlesso A, Chevet E, Eriksson LA. J Chem Inf Model 62 4247-4260 (2022)