5cpp Citations

The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM.

Biochemistry 28 917-22 (1989)
Cited: 86 times
EuropePMC logo PMID: 2713354

Abstract

The crystal structures of cytochrome P-450CAM complexed with the alternative substrates norcamphor and adamantanone have been refined at 2.0-A resolution and compared with the native, camphor-bound form of the enzyme. Norcamphor lacks the 8-, 9-, and 10-methyl groups of camphor. Thus, specific interactions between these groups and phenylalanine 87 and valines 247 and 295 are missing in the norcamphor complex. As a result, norcamphor binds about 0.9 A further from the oxygen-binding site than does camphor, which allows sufficient room for a water molecule or hydroxide ion to remain coordinated with the heme iron atom. The larger adamantanone occupies a position closer to that of camphor and, as in the camphor-bound enzyme, the heme iron remains pentacoordinate with no solvent molecule coordinated as a sixth ligand. A comparison of crystallographic temperature factors indicates that norcamphor is more "loosely" bound than are either camphor or adamantanone, as might be expected from the relative sizes of the different substrates. The looser fit of norcamphor in the active-site pocket results in a less specific pattern of hydroxylation. The presence of an aqua ligand is the likely structural basis for the norcamphor-P-450CAM complex having both a lower redox potential and higher percentage of low-spin heme than do either the camphor-P-450CAM or adamantanone-P-450CAM complexes.

Articles - 5cpp mentioned but not cited (8)

  1. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. Huang B, Schroeder M. BMC Struct Biol 6 19 (2006)
  2. Identification of a functional water channel in cytochrome P450 enzymes. Oprea TI, Hummer G, Garcia AE. Proc Natl Acad Sci U S A 94 2133-2138 (1997)
  3. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. Zhang S, Golbraikh A, Tropsha A. J Med Chem 49 2713-2724 (2006)
  4. Identifying unexpected therapeutic targets via chemical-protein interactome. Yang L, Chen J, Shi L, Hudock MP, Wang K, He L. PLoS One 5 e9568 (2010)
  5. Spring-loading the active site of cytochrome P450cam. Dang M, Pochapsky SS, Pochapsky TC. Metallomics 3 339-343 (2011)
  6. Explicit water near the catalytic I helix Thr in the predicted solution structure of CYP2A4. Gorokhov A, Negishi M, Johnson EF, Pedersen LC, Perera L, Darden TA, Pedersen LG. Biophys J 84 57-68 (2003)
  7. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing. Fang Y, Ding Y, Feinstein WP, Koppelman DM, Moreno J, Jarrell M, Ramanujam J, Brylinski M. PLoS One 11 e0158898 (2016)
  8. PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Hwang SB, Lee CJ, Lee S, Ma S, Kang YM, Cho KH, Kim SY, Kwon OY, Yoon CN, Kang YK, Yoon JH, Nam KY, Kim SG, In Y, Chai HH, Acree WE, Grant JA, Gibson KD, Jhon MS, Scheraga HA, No KT. J Phys Chem B 124 974-989 (2020)


Reviews citing this publication (12)

  1. Cytochrome P450: what have we learned and what are the future issues? Guengerich FP. Drug Metab Rev 36 159-197 (2004)
  2. Conformational plasticity and structure/function relationships in cytochromes P450. Pochapsky TC, Kazanis S, Dang M. Antioxid Redox Signal 13 1273-1296 (2010)
  3. Structural properties of peroxidases. Banci L. J Biotechnol 53 253-263 (1997)
  4. Substrate specificities and functions of the P450 cytochromes. Juchau MR. Life Sci 47 2385-2394 (1990)
  5. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Chem Rev 118 10840-11022 (2018)
  6. Interactions of cytochrome P450s with their ligands. Conner KP, Woods CM, Atkins WM. Arch Biochem Biophys 507 56-65 (2011)
  7. Nature of the FeO2 bonding in myoglobin and hemoglobin: A new molecular paradigm. Shikama K. Prog Biophys Mol Biol 91 83-162 (2006)
  8. P450 structures and oxidative metabolism of xenobiotics. Lewis DF. Pharmacogenomics 4 387-395 (2003)
  9. Cytochromes P450: their active-site structure and mechanism of oxidation. Koymans L, Donné-op den Kelder GM, Koppele Te JM, Vermeulen NP. Drug Metab Rev 25 325-387 (1993)
  10. Modeling the active sites of cytochrome P450s and glutathione S-transferases, two of the most important biotransformation enzymes. De Groot MJ, Vermeulen NP. Drug Metab Rev 29 747-799 (1997)
  11. Directed evolution of new enzymes and pathways for environmental biocatalysis. Wackett LP. Ann N Y Acad Sci 864 142-152 (1998)
  12. Alteration of the substrate specificity of mouse 2A P450s by the identity of residue-209: steroid-binding site and orientation. Negishi M, Iwasaki M, Juvonen RO, Aida K. J Steroid Biochem Mol Biol 43 1031-1036 (1992)

Articles citing this publication (66)

  1. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J. Structure 3 41-62 (1995)
  2. Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. Hasemann CA, Ravichandran KG, Peterson JA, Deisenhofer J. J Mol Biol 236 1169-1185 (1994)
  3. Evolutionary history of a specialized p450 propane monooxygenase. Fasan R, Meharenna YT, Snow CD, Poulos TL, Arnold FH. J Mol Biol 383 1069-1080 (2008)
  4. Analysis of four residues within substrate recognition site 4 of human cytochrome P450 3A4: role in steroid hydroxylase activity and alpha-naphthoflavone stimulation. Domanski TL, Liu J, Harlow GR, Halpert JR. Arch Biochem Biophys 350 223-232 (1998)
  5. Letter The catalytic mechanism of cytochrome P450 BM3 involves a 6 A movement of the bound substrate on reduction. Modi S, Sutcliffe MJ, Primrose WU, Lian LY, Roberts GC. Nat Struct Biol 3 414-417 (1996)
  6. Binding affinity prediction with different force fields: examination of the linear interaction energy method. Almlöf M, Brandsdal BO, Aqvist J. J Comput Chem 25 1242-1254 (2004)
  7. Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase. Wen Z, Pan L, Berenbaum MR, Schuler MA. Insect Biochem Mol Biol 33 937-947 (2003)
  8. Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hydroxylase. Pierrel MA, Batard Y, Kazmaier M, Mignotte-Vieux C, Durst F, Werck-Reichhart D. Eur J Biochem 224 835-844 (1994)
  9. Redox potential control by drug binding to cytochrome P450 3A4. Das A, Grinkova YV, Sligar SG. J Am Chem Soc 129 13778-13779 (2007)
  10. The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics Robineau T, Batard Y, Nedelkina S, Cabello-Hurtado F, LeRet M, Sorokine O, Didierjean L, Werck-Reichhart D. Plant Physiol 118 1049-1056 (1998)
  11. Thermodynamics of water mediating protein-ligand interactions in cytochrome P450cam: a molecular dynamics study. Helms V, Wade RC. Biophys J 69 810-824 (1995)
  12. A single amino acid substitution (F363I) converts the regiochemistry of the spearmint (-)-limonene hydroxylase from a C6- to a C3-hydroxylase. Schalk M, Croteau R. Proc Natl Acad Sci U S A 97 11948-11953 (2000)
  13. Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102 (P450bm3). Lewis DF. Xenobiotica 25 333-366 (1995)
  14. Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: A new tool to control the flux of metabolites in the phenylpropanoid pathway Schalk M, Cabello-Hurtado F, Pierrel MA, Atanossova R, Saindrenan P, Werck-Reichhart D. Plant Physiol 118 209-218 (1998)
  15. A 175-psec molecular dynamics simulation of camphor-bound cytochrome P-450cam. Paulsen MD, Ornstein RL. Proteins 11 184-204 (1991)
  16. Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins. Kirton SB, Murray CW, Verdonk ML, Taylor RD. Proteins 58 836-844 (2005)
  17. The heme monooxygenase cytochrome P450cam can be engineered to oxidize ethane to ethanol. Xu F, Bell SG, Lednik J, Insley A, Rao Z, Wong LL. Angew Chem Int Ed Engl 44 4029-4032 (2005)
  18. Modeling cytochrome P450 14 alpha demethylase (Candida albicans) from P450cam. Boscott PE, Grant GH. J Mol Graph 12 185-92, 195 (1994)
  19. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state. Harris DL, Park JY, Gruenke L, Waskell L. Proteins 55 895-914 (2004)
  20. Protein dynamics in cytochrome P450 molecular recognition and substrate specificity using 2D IR vibrational echo spectroscopy. Thielges MC, Chung JK, Fayer MD. J Am Chem Soc 133 3995-4004 (2011)
  21. Detection of substrate-dependent conformational changes in the P450 fold by nuclear magnetic resonance. Colthart AM, Tietz DR, Ni Y, Friedman JL, Dang M, Pochapsky TC. Sci Rep 6 22035 (2016)
  22. Antagonistic effects of hydrostatic pressure and osmotic pressure on cytochrome P-450cam spin transition. Di Primo C, Deprez E, Hoa GH, Douzou P. Biophys J 68 2056-2061 (1995)
  23. Predicting the product specificity and coupling of cytochrome P450cam. Paulsen MD, Ornstein RL. J Comput Aided Mol Des 6 449-460 (1992)
  24. Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires. Hays AM, Dunn AR, Chiu R, Gray HB, Stout CD, Goodin DB. J Mol Biol 344 455-469 (2004)
  25. NMR study on the structural changes of cytochrome P450cam upon the complex formation with putidaredoxin. Functional significance of the putidaredoxin-induced structural changes. Tosha T, Yoshioka S, Takahashi S, Ishimori K, Shimada H, Morishima I. J Biol Chem 278 39809-39821 (2003)
  26. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases. Wang W, Liang AD, Lippard SJ. Acc Chem Res 48 2632-2639 (2015)
  27. Hydroxylation of limonene enantiomers and analogs by recombinant (-)-limonene 3- and 6-hydroxylases from mint (Mentha) species: evidence for catalysis within sterically constrained active sites. Wüst M, Little DB, Schalk M, Croteau R. Arch Biochem Biophys 387 125-136 (2001)
  28. Optimized expression and catalytic properties of a wheat obtusifoliol 14alpha-demethylase (CYP51) expressed in yeast. Complementation of erg11Delta yeast mutants by plant CYP51. Cabello-Hurtado F, Taton M, Forthoffer N, Kahn R, Bak S, Rahier A, Werck-Reichhart D. Eur J Biochem 262 435-446 (1999)
  29. Solution structural ensembles of substrate-free cytochrome P450(cam). Asciutto EK, Young MJ, Madura J, Pochapsky SS, Pochapsky TC. Biochemistry 51 3383-3393 (2012)
  30. Stereoselective hydroxylation of norcamphor by cytochrome P450cam. Experimental verification of molecular dynamics simulations. Loida PJ, Sligar SG, Paulsen MD, Arnold GE, Ornstein RL. J Biol Chem 270 5326-5330 (1995)
  31. Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121: insights from biochemical studies and crystal structures. Fonvielle M, Le Du MH, Lequin O, Lecoq A, Jacquet M, Thai R, Dubois S, Grach G, Gondry M, Belin P. J Biol Chem 288 17347-17359 (2013)
  32. Chemical inactivation of the cinnamate 4-hydroxylase allows for the accumulation of salicylic acid in elicited cells. Schoch GA, Nikov GN, Alworth WL, Werck-Reichhart D. Plant Physiol 130 1022-1031 (2002)
  33. Crystallization and preliminary x-ray diffraction analysis of P450terp and the hemoprotein domain of P450BM-3, enzymes belonging to two distinct classes of the cytochrome P450 superfamily. Boddupalli SS, Hasemann CA, Ravichandran KG, Lu JY, Goldsmith EJ, Deisenhofer J, Peterson JA. Proc Natl Acad Sci U S A 89 5567-5571 (1992)
  34. Elucidating the role of the proximal cysteine hydrogen-bonding network in ferric cytochrome P450cam and corresponding mutants using magnetic circular dichroism spectroscopy. Galinato MG, Spolitak T, Ballou DP, Lehnert N. Biochemistry 50 1053-1069 (2011)
  35. Fatty acid discrimination and omega-hydroxylation by cytochrome P450 4A1 and a cytochrome P4504A1/NADPH-P450 reductase fusion protein. Alterman MA, Chaurasia CS, Lu P, Hardwick JP, Hanzlik RP. Arch Biochem Biophys 320 289-296 (1995)
  36. The sequence homologies of cytochromes P-450 and active-site geometries. Lewis DF, Moereels H. J Comput Aided Mol Des 6 235-252 (1992)
  37. A method for determining the positions of polar hydrogens added to a protein structure that maximizes protein hydrogen bonding. Bass MB, Hopkins DF, Jaquysh WA, Ornstein RL. Proteins 12 266-277 (1992)
  38. S K-edge XAS and DFT calculations on cytochrome P450: covalent and ionic contributions to the cysteine-Fe bond and their contribution to reactivity. Dey A, Jiang Y, Ortiz de Montellano P, Hodgson KO, Hedman B, Solomon EI. J Am Chem Soc 131 7869-7878 (2009)
  39. Effect of the tyrosine 96 hydrogen bond on the inactivation of cytochrome P-450cam induced by hydrostatic pressure. Di Primo C, Hui Bon Hoa G, Douzou P, Sligar S. Eur J Biochem 193 383-386 (1990)
  40. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam. Paulsen MD, Bass MB, Ornstein RL. J Biomol Struct Dyn 9 187-203 (1991)
  41. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product. Paulsen MD, Filipovic D, Sligar SG, Ornstein RL. Protein Sci 2 357-365 (1993)
  42. Heme-pocket-hydration change during the inactivation of cytochrome P-450camphor by hydrostatic pressure. Di Primo C, Hui Bon Hoa G, Douzou P, Sligar SG. Eur J Biochem 209 583-588 (1992)
  43. The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM. Sono M, Perera R, Jin S, Makris TM, Sligar SG, Bryson TA, Dawson JH. Arch Biochem Biophys 436 40-49 (2005)
  44. Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin. Deprez E, Gill E, Helms V, Wade RC, Hui Bon Hoa G. J Inorg Biochem 91 597-606 (2002)
  45. Solvation of the active site of cytochrome P450-cam. Wade RC. J Comput Aided Mol Des 4 199-204 (1990)
  46. A critical role of protein-bound water in the catalytic cycle of cytochrome P-450 camphor. Di Primo C, Sligar SG, Hoa GH, Douzou P. FEBS Lett 312 252-254 (1992)
  47. Kinetic and binding studies with purified recombinant proteins ferredoxin reductase, ferredoxin and cytochrome P450 comprising the morpholine mono-oxygenase from Mycobacterium sp. strain HE5. Sielaff B, Andreesen JR. FEBS J 272 1148-1159 (2005)
  48. Effects of monovalent cations on cytochrome P-450 camphor. Evidence for preferential binding of potassium. Deprez E, Di Primo C, Hoa GH, Douzou P. FEBS Lett 347 207-210 (1994)
  49. ProPose: a docking engine based on a fully configurable protein-ligand interaction model. Seifert MH, Schmitt F, Herz T, Kramer B. J Mol Model 10 342-357 (2004)
  50. Cosubstrate effects in reductive dehalogenation by Pseudomonas putida G786 expressing cytochrome P-450CAM. Logan MS, Newman LM, Schanke CA, Wackett LP. Biodegradation 4 39-50 (1993)
  51. Identification of new substrates for the CYP106A1-mediated 11-oxidation and investigation of the reaction mechanism. Kiss FM, Khatri Y, Zapp J, Bernhardt R. FEBS Lett 589 2320-2326 (2015)
  52. Substrate mobility in a deeply buried active site: analysis of norcamphor bound to cytochrome P-450cam as determined by a 201-psec molecular dynamics simulation. Bass MB, Paulsen MD, Ornstein RL. Proteins 13 26-37 (1992)
  53. NADH reduction of nitroaromatics as a probe for residual ferric form high-spin in a cytochrome P450. Pochapsky TC, Wong N, Zhuang Y, Futcher J, Pandelia ME, Teitz DR, Colthart AM. Biochim Biophys Acta Proteins Proteom 1866 126-133 (2018)
  54. 1H-NMR study of diamagnetic cytochrome P450cam: assignment of heme resonances and substrate dependance of one cysteinate beta proton. Mouro C, Bondon A, Simonneaux G, Jung C. FEBS Lett 414 203-208 (1997)
  55. An evaluation of molecular models of the cytochrome P450 Streptomyces griseolus enzymes P450SU1 and P450SU2. Braatz JA, Bass MB, Ornstein RL. J Comput Aided Mol Des 8 607-622 (1994)
  56. Substrate modulates compound I formation in peroxide shunt pathway of Pseudomonas putida cytochrome P450(cam). Prasad S, Mitra S. Biochem Biophys Res Commun 314 610-614 (2004)
  57. An ab initio approach to the understanding of cytochrome P450-ligand interactions. Segall MD, Payne MC, Ellis SW, Tucker GT, Boyes RN. Xenobiotica 28 15-20 (1998)
  58. Conformational Heterogeneity and the Affinity of Substrate Molecular Recognition by Cytochrome P450cam. Basom EJ, Manifold BA, Thielges MC. Biochemistry 56 3248-3256 (2017)
  59. NMR studies of recombinant cytochrome P450cam mutants. Wakasugi K, Ishimori K, Morishima I. Biochimie 78 763-770 (1996)
  60. Scanning tunneling microscopy study of cytochrome P450 2B4 incorporated in proteoliposomes. Uvarov VYu, Ivanov YD, Romanov AN, Gallyamov MO, Kiselyova OI, Yaminsky IV. Biochimie 78 780-784 (1996)
  61. Time-resolved Fourier-transform infrared studies of the cytochrome P-450cam carbonmonoxide complex bound with (1R)-camphor and (1S)-camphor substrate. Contzen J, Ristau O, Jung C. FEBS Lett 383 13-17 (1996)
  62. Ab initio molecular modeling in the study of drug metabolism. Segall MD, Payne MC, Ellis SW, Tucker GT, Boyes RN. Eur J Drug Metab Pharmacokinet 22 283-289 (1997)
  63. Active-site mobility inhibits reductive dehalogenation of 1,1,1-trichloroethane by cytochrome P450cam. Paulsen MD, Ornstein RL. J Comput Aided Mol Des 8 389-404 (1994)
  64. Structural alterations of the heme environment of cytochrome P450cam and the Y96F mutant as deduced by resonance Raman spectroscopy. Niaura G, Reipa V, Mayhew MP, Holden M, Vilker VL. Arch Biochem Biophys 409 102-112 (2003)
  65. Dynamics underlying hydroxylation selectivity of cytochrome P450cam. Ramos S, Mammoser CC, Thibodeau KE, Thielges MC. Biophys J 120 912-923 (2021)
  66. Electron paramagnetic resonance investigation of cytochrome P-450c21 from bovine adrenocortical microsomes: a new enzymatic activity. Tsubaki M, Morimoto K, Tomita S, Miura S, Ichikawa Y, Miyatake A, Masuya F, Hori H. Biochim Biophys Acta 1259 89-98 (1995)


Related citations provided by authors (3)