5dqu Citations

Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems.

Cell 163 840-53 (2015)
Related entries: 5dlj, 5dqt, 5dqz

Cited: 148 times
EuropePMC logo PMID: 26478180

Abstract

Bacteria acquire memory of viral invaders by incorporating invasive DNA sequence elements into the host CRISPR locus, generating a new spacer within the CRISPR array. We report on the structures of Cas1-Cas2-dual-forked DNA complexes in an effort toward understanding how the protospacer is sampled prior to insertion into the CRISPR locus. Our study reveals a protospacer DNA comprising a 23-bp duplex bracketed by tyrosine residues, together with anchored flanking 3' overhang segments. The PAM-complementary sequence in the 3' overhang is recognized by the Cas1a catalytic subunits in a base-specific manner, and subsequent cleavage at positions 5 nt from the duplex boundary generates a 33-nt DNA intermediate that is incorporated into the CRISPR array via a cut-and-paste mechanism. Upon protospacer binding, Cas1-Cas2 undergoes a significant conformational change, generating a flat surface conducive to proper protospacer recognition. Here, our study provides important structure-based mechanistic insights into PAM-dependent spacer acquisition.

Reviews - 5dqu mentioned but not cited (1)

  1. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Thompson MK, Sobol RW, Prakash A. Biology (Basel) 10 530 (2021)

Articles - 5dqu mentioned but not cited (2)



Reviews citing this publication (36)

  1. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Wright AV, Nuñez JK, Doudna JA. Cell 164 29-44 (2016)
  2. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Science 353 aad5147 (2016)
  3. CRISPR-Cas adaptation: insights into the mechanism of action. Amitai G, Sorek R. Nat Rev Microbiol 14 67-76 (2016)
  4. CRISPR-Cas: Adapting to change. Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJ. Science 356 eaal5056 (2017)
  5. Adaptation in CRISPR-Cas Systems. Sternberg SH, Richter H, Charpentier E, Qimron U. Mol Cell 61 797-808 (2016)
  6. Origins and evolution of CRISPR-Cas systems. Koonin EV, Makarova KS. Philos Trans R Soc Lond B Biol Sci 374 20180087 (2019)
  7. Evolutionary Ecology of Prokaryotic Immune Mechanisms. van Houte S, Buckling A, Westra ER. Microbiol Mol Biol Rev 80 745-763 (2016)
  8. Molecular mechanisms of CRISPR-Cas spacer acquisition. McGinn J, Marraffini LA. Nat Rev Microbiol 17 7-12 (2019)
  9. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Koonin EV, Makarova KS. Genome Biol Evol 9 2812-2825 (2017)
  10. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Krupovic M, Béguin P, Koonin EV. Curr Opin Microbiol 38 36-43 (2017)
  11. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Cai P, Gao J, Zhou Y. Microb Cell Fact 18 63 (2019)
  12. CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers. Wimmer F, Beisel CL. Front Microbiol 10 3078 (2019)
  13. Conformational regulation of CRISPR-associated nucleases. Jackson RN, van Erp PB, Sternberg SH, Wiedenheft B. Curr Opin Microbiol 37 110-119 (2017)
  14. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. de la Fuente-Núñez C, Lu TK. Integr Biol (Camb) 9 109-122 (2017)
  15. The CRISPR-Cas system in Enterobacteriaceae. Medina-Aparicio L, Dávila S, Rebollar-Flores JE, Calva E, Hernández-Lucas I. Pathog Dis 76 (2018)
  16. Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects. Li Y, Peng N. Front Microbiol 10 2471 (2019)
  17. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Wang JY, Pausch P, Doudna JA. Nat Rev Microbiol 20 641-656 (2022)
  18. CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Loureiro A, da Silva GJ. Antibiotics (Basel) 8 E18 (2019)
  19. Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses. Islam MM, Koirala D. Anal Chim Acta 1209 339338 (2022)
  20. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. Xue C, Sashital DG. EcoSal Plus 8 (2019)
  21. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Happi Mbakam C, Lamothe G, Tremblay G, Tremblay JP. Neurotherapeutics 19 931-941 (2022)
  22. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Int J Mol Sci 22 E682 (2021)
  23. CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering. Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR. Genet Res Int 2018 3797214 (2018)
  24. Analysis of CRISPR-Cas System in Streptococcus thermophilus and Its Application. Hao M, Cui Y, Qu X. Front Microbiol 9 257 (2018)
  25. Creating memories: molecular mechanisms of CRISPR adaptation. Lee H, Sashital DG. Trends Biochem Sci 47 464-476 (2022)
  26. Detection of CRISPR adaptation. Shiriaeva A, Fedorov I, Vyhovskyi D, Severinov K. Biochem Soc Trans 48 257-269 (2020)
  27. Digging into the lesser-known aspects of CRISPR biology. Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Int Microbiol 24 473-498 (2021)
  28. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Zink IA, Wimmer E, Schleper C. Biomolecules 10 E1523 (2020)
  29. The physicist's guide to one of biotechnology's hottest new topics: CRISPR-Cas. Bonomo ME, Deem MW. Phys Biol 15 041002 (2018)
  30. CRISPR-Cas system: from diagnostic tool to potential antiviral treatment. Rajan A, Shrivastava S, Janhawi, Kumar A, Singh AK, Arora PK. Appl Microbiol Biotechnol 106 5863-5877 (2022)
  31. Adaptation by Type III CRISPR-Cas Systems: Breakthrough Findings and Open Questions. Zhang X, An X. Front Microbiol 13 876174 (2022)
  32. Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. Bilal M, Ji L, Xu Y, Xu S, Lin Y, Iqbal HMN, Cheng H. Front Bioeng Biotechnol 10 851768 (2022)
  33. Advances in Accurate Microbial Genome-Editing CRISPR Technologies. Lee HJ, Lee SJ. J Microbiol Biotechnol 31 903-911 (2021)
  34. CRISPR-Cas adaptation in Escherichia coli. Mitić D, Bolt EL, Ivančić-Baće I. Biosci Rep 43 BSR20221198 (2023)
  35. Molecular Details of DNA Integration by CRISPR-Associated Proteins During Adaptation in Bacteria and Archaea. Flusche T, Rajan R. Adv Exp Med Biol 1414 27-43 (2023)
  36. The biology and type I/III hybrid nature of type I-D CRISPR-Cas systems. McBride TM, Cameron SC, Fineran PC, Fagerlund RD. Biochem J 480 471-488 (2023)

Articles citing this publication (109)