5ds6 Citations

Foreign DNA capture during CRISPR-Cas adaptive immunity.

OpenAccess logo Nature 527 535-8 (2015)
Related entries: 5ds4, 5ds5

Cited: 109 times
EuropePMC logo PMID: 26503043

Abstract

Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci.

Articles - 5ds6 mentioned but not cited (1)

  1. Foreign DNA capture during CRISPR-Cas adaptive immunity. Nuñez JK, Harrington LB, Kranzusch PJ, Engelman AN, Doudna JA. Nature 527 535-538 (2015)


Reviews citing this publication (23)

  1. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Wright AV, Nuñez JK, Doudna JA. Cell 164 29-44 (2016)
  2. CRISPR-Cas adaptation: insights into the mechanism of action. Amitai G, Sorek R. Nat Rev Microbiol 14 67-76 (2016)
  3. CRISPR-Cas: Adapting to change. Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJ. Science 356 eaal5056 (2017)
  4. Adaptation in CRISPR-Cas Systems. Sternberg SH, Richter H, Charpentier E, Qimron U. Mol Cell 61 797-808 (2016)
  5. A decade of discovery: CRISPR functions and applications. Barrangou R, Horvath P. Nat Microbiol 2 17092 (2017)
  6. Origins and evolution of CRISPR-Cas systems. Koonin EV, Makarova KS. Philos Trans R Soc Lond B Biol Sci 374 20180087 (2019)
  7. Evolutionary Ecology of Prokaryotic Immune Mechanisms. van Houte S, Buckling A, Westra ER. Microbiol Mol Biol Rev 80 745-763 (2016)
  8. Molecular mechanisms of CRISPR-Cas spacer acquisition. McGinn J, Marraffini LA. Nat Rev Microbiol 17 7-12 (2019)
  9. CRISPR-Cas12a: Functional overview and applications. Paul B, Montoya G. Biomed J 43 8-17 (2020)
  10. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Krupovic M, Béguin P, Koonin EV. Curr Opin Microbiol 38 36-43 (2017)
  11. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Stella S, Alcón P, Montoya G. Nat Struct Mol Biol 24 882-892 (2017)
  12. Conformational regulation of CRISPR-associated nucleases. Jackson RN, van Erp PB, Sternberg SH, Wiedenheft B. Curr Opin Microbiol 37 110-119 (2017)
  13. The expanding footprint of CRISPR/Cas9 in the plant sciences. Schaeffer SM, Nakata PA. Plant Cell Rep 35 1451-1468 (2016)
  14. CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Loureiro A, da Silva GJ. Antibiotics (Basel) 8 E18 (2019)
  15. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Wang JY, Pausch P, Doudna JA. Nat Rev Microbiol 20 641-656 (2022)
  16. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. Xue C, Sashital DG. EcoSal Plus 8 (2019)
  17. Creating memories: molecular mechanisms of CRISPR adaptation. Lee H, Sashital DG. Trends Biochem Sci 47 464-476 (2022)
  18. Digging into the lesser-known aspects of CRISPR biology. Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Int Microbiol 24 473-498 (2021)
  19. The physicist's guide to one of biotechnology's hottest new topics: CRISPR-Cas. Bonomo ME, Deem MW. Phys Biol 15 041002 (2018)
  20. The CRISPR-Cas9 system in Neisseria spp. Zhang Y. Pathog Dis 75 (2017)
  21. Adaptation by Type III CRISPR-Cas Systems: Breakthrough Findings and Open Questions. Zhang X, An X. Front Microbiol 13 876174 (2022)
  22. CRISPR-Cas adaptation in Escherichia coli. Mitić D, Bolt EL, Ivančić-Baće I. Biosci Rep 43 BSR20221198 (2023)
  23. The biology and type I/III hybrid nature of type I-D CRISPR-Cas systems. McBride TM, Cameron SC, Fineran PC, Fagerlund RD. Biochem J 480 471-488 (2023)

Articles citing this publication (85)