5dsy Citations

PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain.

Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD(+) to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD(+) binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors.

Articles - 5dsy mentioned but not cited (6)

  1. PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain. Dawicki-McKenna JM, Langelier MF, DeNizio JE, Riccio AA, Cao CD, Karch KR, McCauley M, Steffen JD, Black BE, Pascal JM. Mol Cell 60 755-768 (2015)
  2. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Suskiewicz MJ, Zobel F, Ogden TEH, Fontana P, Ariza A, Yang JC, Zhu K, Bracken L, Hawthorne WJ, Ahel D, Neuhaus D, Ahel I. Nature 579 598-602 (2020)
  3. Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition. Obaji E, Maksimainen MM, Galera-Prat A, Lehtiö L. Nat Commun 12 3479 (2021)
  4. Musa acuminate seed extract attenuates the risk of obesity and associated inflammation in obese mice via suppression of PPARγ and MCP-1. Islam S, Bhowmik DR, Roy S, Rahman Shuvo MS, Begum R, Hasan M, Amin MT, Ud Daula AS, Hossain MS. Heliyon 9 e12737 (2023)
  5. Exploration of Phaeanthine: A Bisbenzylisoquinoline Alkaloid Induces Anticancer Effect in Cervical Cancer Cells Involving Mitochondria-Mediated Apoptosis. Valsan A, Meenu MT, Murali VP, Malgija B, Joseph AG, Nisha P, Radhakrishnan KV, Maiti KK. ACS Omega 8 14799-14813 (2023)
  6. Pseudo-sapogenin DQ 3-Maleate Derivative Induces Ovarian Carcinoma Cell Apoptosis via Mitochondrial Pathway. Han L, Liu J, Yang Y, Zhang H, Gao L, Li Y, Chang S, Sun X. Chem Pharm Bull (Tokyo) 70 427-434 (2022)


Reviews citing this publication (48)

  1. PARP inhibitors: Synthetic lethality in the clinic. Lord CJ, Ashworth A. Science 355 1152-1158 (2017)
  2. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Gupte R, Liu Z, Kraus WL. Genes Dev 31 101-126 (2017)
  3. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Alemasova EE, Lavrik OI. Nucleic Acids Res 47 3811-3827 (2019)
  4. The comings and goings of PARP-1 in response to DNA damage. Pascal JM. DNA Repair (Amst) 71 177-182 (2018)
  5. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications. Zhu H, Wei M, Xu J, Hua J, Liang C, Meng Q, Zhang Y, Liu J, Zhang B, Yu X, Shi S. Mol Cancer 19 49 (2020)
  6. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Langelier MF, Eisemann T, Riccio AA, Pascal JM. Curr Opin Struct Biol 53 187-198 (2018)
  7. ATM, ATR and DNA-PKcs kinases-the lessons from the mouse models: inhibition ≠ deletion. Menolfi D, Zha S. Cell Biosci 10 8 (2020)
  8. PARP Inhibition in Cancer: An Update on Clinical Development. Sachdev E, Tabatabai R, Roy V, Rimel BJ, Mita MM. Target Oncol 14 657-679 (2019)
  9. PARP Inhibitors as a Therapeutic Agent for Homologous Recombination Deficiency in Breast Cancers. Keung MYT, Wu Y, Vadgama JV. J Clin Med 8 E435 (2019)
  10. Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. O'Sullivan J, Tedim Ferreira M, Gagné JP, Sharma AK, Hendzel MJ, Masson JY, Poirier GG. Nat Commun 10 1182 (2019)
  11. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crawford K, Bonfiglio JJ, Mikoč A, Matic I, Ahel I. Crit Rev Biochem Mol Biol 53 64-82 (2018)
  12. Nuclear PARPs and genome integrity. Azarm K, Smith S. Genes Dev 34 285-301 (2020)
  13. Expanding functions of ADP-ribosylation in the maintenance of genome integrity. Martin-Hernandez K, Rodriguez-Vargas JM, Schreiber V, Dantzer F. Semin Cell Dev Biol 63 92-101 (2017)
  14. Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Eisemann T, Pascal JM. Cell Mol Life Sci 77 19-33 (2020)
  15. Targeting DNA repair in cancer: current state and novel approaches. Klinakis A, Karagiannis D, Rampias T. Cell Mol Life Sci 77 677-703 (2020)
  16. Emerging therapies for breast cancer. Hu X, Huang W, Fan M. J Hematol Oncol 10 98 (2017)
  17. PARPs in genome stability and signal transduction: implications for cancer therapy. Palazzo L, Ahel I. Biochem Soc Trans 46 1681-1695 (2018)
  18. Toward understanding genomic instability, mitochondrial dysfunction and aging. Fakouri NB, Hou Y, Demarest TG, Christiansen LS, Okur MN, Mohanty JG, Croteau DL, Bohr VA. FEBS J 286 1058-1073 (2019)
  19. ADP-ribosylation of DNA and RNA. Groslambert J, Prokhorova E, Ahel I. DNA Repair (Amst) 105 103144 (2021)
  20. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Weixler L, Schäringer K, Momoh J, Lüscher B, Feijs KLH, Žaja R. Nucleic Acids Res 49 3634-3650 (2021)
  21. New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Han Y, Yu X, Li S, Tian Y, Liu C. Front Oncol 10 578095 (2020)
  22. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T. Int J Mol Sci 22 5112 (2021)
  23. MARTs and MARylation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. Challa S, Stokes MS, Kraus WL. Cells 10 313 (2021)
  24. Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Brady PN, Goel A, Johnson MA. Microbiol Mol Biol Rev 83 e00038-18 (2019)
  25. Rapid Detection and Signaling of DNA Damage by PARP-1. Pandey N, Black BE. Trends Biochem Sci 46 744-757 (2021)
  26. Recent advancements in PARP inhibitors-based targeted cancer therapy. Zhou P, Wang J, Mishail D, Wang CY. Precis Clin Med 3 187-201 (2020)
  27. The Synergistic Effect of PARP Inhibitors and Immune Checkpoint Inhibitors. Wu Z, Cui P, Tao H, Zhang S, Ma J, Liu Z, Wang J, Qian Y, Chen S, Huang Z, Zheng X, Huang D, Hu Y. Clin Med Insights Oncol 15 1179554921996288 (2021)
  28. PARP1: Structural insights and pharmacological targets for inhibition. Spiegel JO, Van Houten B, Durrant JD. DNA Repair (Amst) 103 103125 (2021)
  29. Poly ADP-ribose polymerase-1: Beyond transcription and towards differentiation. Jubin T, Kadam A, Gani AR, Singh M, Dwivedi M, Begum R. Semin Cell Dev Biol 63 167-179 (2017)
  30. Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities. Rissel D, Peiter E. Int J Mol Sci 20 E1638 (2019)
  31. What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses. Brosey CA, Ahmed Z, Lees-Miller SP, Tainer JA. Methods Enzymol 592 417-455 (2017)
  32. En Guard! The Interactions between Adenoviruses and the DNA Damage Response. Kleinberger T. Viruses 12 E996 (2020)
  33. The Making and Breaking of Serine-ADP-Ribosylation in the DNA Damage Response. Schützenhofer K, Rack JGM, Ahel I. Front Cell Dev Biol 9 745922 (2021)
  34. Investigational Drug Treatments for Triple-Negative Breast Cancer. Damaskos C, Garmpis N, Garmpi A, Nikolettos K, Sarantis P, Georgakopoulou VE, Nonni A, Schizas D, Antoniou EA, Karamouzis MV, Nikolettos N, Kontzoglou K, Patsouras A, Voutyritsa E, Syllaios A, Koustas E, Trakas N, Dimitroulis D. J Pers Med 11 652 (2021)
  35. Insights into the Possible Molecular Mechanisms of Resistance to PARP Inhibitors. Piombino C, Cortesi L. Cancers (Basel) 14 2804 (2022)
  36. Development of PARP inhibitor combinations for castration resistant prostate cancer unselected for homologous recombination repair mutations. McFarland TR, Kessel A, Swami U, Agarwal N. Am J Transl Res 13 7427-7439 (2021)
  37. Exploring the genetic space of the DNA damage response for cancer therapy through CRISPR-based screens. Wilson J, Loizou JI. Mol Oncol 16 3778-3791 (2022)
  38. Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status. Wu Y, Xu S, Cheng S, Yang J, Wang Y. J Ovarian Res 16 6 (2023)
  39. Regulation of Biomolecular Condensates by Poly(ADP-ribose). Rhine K, Odeh HM, Shorter J, Myong S. Chem Rev 123 9065-9093 (2023)
  40. Response prediction biomarkers and drug combinations of PARP inhibitors in prostate cancer. Chen YX, Tan LM, Gong JP, Huang MS, Yin JY, Zhang W, Zhou HH, Liu ZQ. Acta Pharmacol Sin 42 1970-1980 (2021)
  41. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. Front Mol Biosci 9 1073797 (2022)
  42. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. Rouleau-Turcotte É, Pascal JM. J Biol Chem 299 105397 (2023)
  43. ADP-ribosylation from molecular mechanisms to therapeutic implications. Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. Cell 186 4475-4495 (2023)
  44. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Gillespie MS, Ward CM, Davies CC. Cancers (Basel) 15 1897 (2023)
  45. PARPs and ADP-Ribosylation in Chronic Inflammation: A Focus on Macrophages. Santinelli-Pestana DV, Aikawa E, Singh SA, Aikawa M. Pathogens 12 964 (2023)
  46. The Promise of Poly(ADP-Ribose) Polymerase (PARP) Inhibitors in Gliomas. Majd N, Yap TA, Yung WKA, de Groot J. J Immunother Precis Oncol 3 157-164 (2020)
  47. The Role of Poly(ADP-ribose) Polymerase 1 in Nuclear and Mitochondrial Base Excision Repair. Herrmann GK, Yin YW. Biomolecules 13 1195 (2023)
  48. Unravelling the Role of PARP1 in Homeostasis and Tumorigenesis: Implications for Anti-Cancer Therapies and Overcoming Resistance. Lovsund T, Mashayekhi F, Fitieh A, Stafford J, Ismail IH. Cells 12 1904 (2023)

Articles citing this publication (81)

  1. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. Pettitt SJ, Krastev DB, Brandsma I, Dréan A, Song F, Aleksandrov R, Harrell MI, Menon M, Brough R, Campbell J, Frankum J, Ranes M, Pemberton HN, Rafiq R, Fenwick K, Swain A, Guettler S, Lee JM, Swisher EM, Stoynov S, Yusa K, Ashworth A, Lord CJ. Nat Commun 9 1849 (2018)
  2. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. Eustermann S, Wu WF, Langelier MF, Yang JC, Easton LE, Riccio AA, Pascal JM, Neuhaus D. Mol Cell 60 742-754 (2015)
  3. Structural basis for allosteric PARP-1 retention on DNA breaks. Zandarashvili L, Langelier MF, Velagapudi UK, Hancock MA, Steffen JD, Billur R, Hannan ZM, Wicks AJ, Krastev DB, Pettitt SJ, Lord CJ, Talele TT, Pascal JM, Black BE. Science 368 eaax6367 (2020)
  4. NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Langelier MF, Zandarashvili L, Aguiar PM, Black BE, Pascal JM. Nat Commun 9 844 (2018)
  5. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro. Talhaoui I, Lebedeva NA, Zarkovic G, Saint-Pierre C, Kutuzov MM, Sukhanova MV, Matkarimov BT, Gasparutto D, Saparbaev MK, Lavrik OI, Ishchenko AA. Nucleic Acids Res 44 9279-9295 (2016)
  6. Reversible ADP-ribosylation of RNA. Munnur D, Bartlett E, Mikolčević P, Kirby IT, Rack JGM, Mikoč A, Cohen MS, Ahel I. Nucleic Acids Res 47 5658-5669 (2019)
  7. Characterization of DNA ADP-ribosyltransferase activities of PARP2 and PARP3: new insights into DNA ADP-ribosylation. Zarkovic G, Belousova EA, Talhaoui I, Saint-Pierre C, Kutuzov MM, Matkarimov BT, Biard D, Gasparutto D, Lavrik OI, Ishchenko AA. Nucleic Acids Res 46 2417-2431 (2018)
  8. Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin. Bilokapic S, Suskiewicz MJ, Ahel I, Halic M. Nature 585 609-613 (2020)
  9. Poly(ADP-ribose) polymerase 1 accelerates vascular calcification by upregulating Runx2. Wang C, Xu W, An J, Liang M, Li Y, Zhang F, Tong Q, Huang K. Nat Commun 10 1203 (2019)
  10. CARM1 regulates replication fork speed and stress response by stimulating PARP1. Genois MM, Gagné JP, Yasuhara T, Jackson J, Saxena S, Langelier MF, Ahel I, Bedford MT, Pascal JM, Vindigni A, Poirier GG, Zou L. Mol Cell 81 784-800.e8 (2021)
  11. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Shao Z, Lee BJ, Rouleau-Turcotte É, Langelier MF, Lin X, Estes VM, Pascal JM, Zha S. Nucleic Acids Res 48 9694-9709 (2020)
  12. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Gröschel S, Hübschmann D, Raimondi F, Horak P, Warsow G, Fröhlich M, Klink B, Gieldon L, Hutter B, Kleinheinz K, Bonekamp D, Marschal O, Chudasama P, Mika J, Groth M, Uhrig S, Krämer S, Heining C, Heilig CE, Richter D, Reisinger E, Pfütze K, Eils R, Wolf S, von Kalle C, Brandts C, Scholl C, Weichert W, Richter S, Bauer S, Penzel R, Schröck E, Stenzinger A, Schlenk RF, Brors B, Russell RB, Russell RB, Glimm H, Schlesner M, Fröhling S. Nat Commun 10 1635 (2019)
  13. PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response. Aberle L, Krüger A, Reber JM, Lippmann M, Hufnagel M, Schmalz M, Trussina IREA, Schlesiger S, Zubel T, Schütz K, Marx A, Hartwig A, Ferrando-May E, Bürkle A, Mangerich A. Nucleic Acids Res 48 10015-10033 (2020)
  14. Serine-linked PARP1 auto-modification controls PARP inhibitor response. Prokhorova E, Zobel F, Smith R, Zentout S, Gibbs-Seymour I, Schützenhofer K, Peters A, Groslambert J, Zorzini V, Agnew T, Brognard J, Nielsen ML, Ahel D, Huet S, Suskiewicz MJ, Ahel I. Nat Commun 12 4055 (2021)
  15. Pharmacologic characterization of fluzoparib, a novel poly(ADP-ribose) polymerase inhibitor undergoing clinical trials. Wang L, Yang C, Xie C, Jiang J, Gao M, Fu L, Li Y, Bao X, Fu H, Lou L. Cancer Sci 110 1064-1075 (2019)
  16. Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR spectroscopy. Krüger A, Bürkle A, Hauser K, Mangerich A. Nat Commun 11 2174 (2020)
  17. Poly(ADP-ribose) polymerase 1 searches DNA via a 'monkey bar' mechanism. Rudolph J, Mahadevan J, Dyer P, Luger K. Elife 7 e37818 (2018)
  18. Sulfur [18F]Fluoride Exchange Click Chemistry Enabled Ultrafast Late-Stage Radiosynthesis. Zheng Q, Xu H, Wang H, Du WH, Wang N, Xiong H, Gu Y, Noodleman L, Sharpless KB, Yang G, Wu P. J Am Chem Soc 143 3753-3763 (2021)
  19. Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. Bolderson E, Burgess JT, Li J, Gandhi NS, Boucher D, Croft LV, Beard S, Plowman JJ, Suraweera A, Adams MN, Naqi A, Zhang SD, Sinclair DA, O'Byrne KJ, Richard DJ. Nat Commun 10 5501 (2019)
  20. Inhibitors of PARP: Number crunching and structure gazing. Rudolph J, Jung K, Luger K. Proc Natl Acad Sci U S A 119 e2121979119 (2022)
  21. ADP-ribosylation: from molecular mechanisms to human disease. Hoch NC, Polo LM. Genet Mol Biol 43 e20190075 (2019)
  22. Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action. Sari AN, Bhargava P, Dhanjal JK, Putri JF, Radhakrishnan N, Shefrin S, Ishida Y, Terao K, Sundar D, Kaul SC, Wadhwa R. Cancers (Basel) 12 E1160 (2020)
  23. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage. Steffen JD, McCauley MM, Pascal JM. Nucleic Acids Res 44 9771-9783 (2016)
  24. Using sulfuramidimidoyl fluorides that undergo sulfur(VI) fluoride exchange for inverse drug discovery. Brighty GJ, Botham RC, Li S, Nelson L, Mortenson DE, Li G, Morisseau C, Wang H, Hammock BD, Sharpless KB, Kelly JW. Nat Chem 12 906-913 (2020)
  25. HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to hydrolase. Rudolph J, Roberts G, Muthurajan UM, Luger K. Elife 10 e65773 (2021)
  26. Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs. Rudolph J, Roberts G, Luger K. Nat Commun 12 736 (2021)
  27. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. Spiegel JO, Durrant JD. J Cheminform 12 25 (2020)
  28. HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones. Sun FH, Zhao P, Zhang N, Kong LL, Wong CCL, Yun CH. Nat Commun 12 1028 (2021)
  29. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. Gaullier G, Roberts G, Muthurajan UM, Bowerman S, Rudolph J, Mahadevan J, Jha A, Rae PS, Luger K. PLoS One 15 e0240932 (2020)
  30. The multifunctional protein YB-1 potentiates PARP1 activity and decreases the efficiency of PARP1 inhibitors. Alemasova EE, Naumenko KN, Kurgina TA, Anarbaev RO, Lavrik OI. Oncotarget 9 23349-23365 (2018)
  31. Analyzing structure-function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells. Rank L, Veith S, Gwosch EC, Demgenski J, Ganz M, Jongmans MC, Vogel C, Fischbach A, Buerger S, Fischer JM, Zubel T, Stier A, Renner C, Schmalz M, Beneke S, Groettrup M, Kuiper RP, Bürkle A, Ferrando-May E, Mangerich A. Nucleic Acids Res 44 10386-10405 (2016)
  32. The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Rudolph J, Muthurajan UM, Palacio M, Mahadevan J, Roberts G, Erbse AH, Dyer PN, Luger K. Mol Cell 81 4994-5006.e5 (2021)
  33. HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Langelier MF, Billur R, Sverzhinsky A, Black BE, Pascal JM. Nat Commun 12 6675 (2021)
  34. Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition. Ogden TEH, Yang JC, Schimpl M, Easton LE, Underwood E, Rawlins PB, McCauley MM, Langelier MF, Pascal JM, Embrey KJ, Neuhaus D. Nucleic Acids Res 49 2266-2288 (2021)
  35. MEIS homeodomain proteins facilitate PARP1/ARTD1-mediated eviction of histone H1. Hau AC, Grebbin BM, Agoston Z, Anders-Maurer M, Müller T, Groß A, Kolb J, Langer JD, Döring C, Schulte D. J Cell Biol 216 2715-2729 (2017)
  36. Identification and Characterization of MortaparibPlus-A Novel Triazole Derivative That Targets Mortalin-p53 Interaction and Inhibits Cancer-Cell Proliferation by Wild-Type p53-Dependent and -Independent Mechanisms. Sari AN, Elwakeel A, Dhanjal JK, Kumar V, Sundar D, Kaul SC, Wadhwa R. Cancers (Basel) 13 835 (2021)
  37. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy. Sultanov DC, Gerasimova NS, Kudryashova KS, Maluchenko NV, Kotova EY, Langelier MF, Pascal JM, Kirpichnikov MP, Feofanov AV, Studitsky VM. AIMS Genet 4 21-31 (2017)
  38. Anticancer effects of 10-hydroxycamptothecin induce apoptosis of human osteosarcoma through activating caspase-3, p53 and cytochrome c pathways. Min X, Heng H, Yu HL, Dan M, Jie C, Zeng Y, Ning H, Liu ZG, Wang ZY, Lin W. Oncol Lett 15 2459-2464 (2018)
  39. Regulation of tankyrase activity by a catalytic domain dimer interface. Fan C, Yarravarapu N, Chen H, Kulak O, Dasari P, Herbert J, Yamaguchi K, Lum L, Zhang X. Biochem Biophys Res Commun 503 1780-1785 (2018)
  40. LigGrep: a tool for filtering docked poses to improve virtual-screening hit rates. Ha EJ, Lwin CT, Durrant JD. J Cheminform 12 69 (2020)
  41. Serine ADP-ribosylation marks nucleosomes for ALC1-dependent chromatin remodeling. Mohapatra J, Tashiro K, Beckner RL, Sierra J, Kilgore JA, Williams NS, Liszczak G. Elife 10 e71502 (2021)
  42. Captured snapshots of PARP1 in the active state reveal the mechanics of PARP1 allostery. Rouleau-Turcotte É, Krastev DB, Pettitt SJ, Lord CJ, Pascal JM. Mol Cell 82 2939-2951.e5 (2022)
  43. Design and Synthesis of Poly(ADP-ribose) Polymerase Inhibitors: Impact of Adenosine Pocket-Binding Motif Appendage to the 3-Oxo-2,3-dihydrobenzofuran-7-carboxamide on Potency and Selectivity. Velagapudi UK, Langelier MF, Delgado-Martin C, Diolaiti ME, Bakker S, Ashworth A, Patel BA, Shao X, Pascal JM, Talele TT. J Med Chem 62 5330-5357 (2019)
  44. At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Alemasova EE, Lavrik OI. Acta Naturae 9 4-16 (2017)
  45. Role of Poly [ADP-ribose] Polymerase 1 in Activating the Kirstenras (KRAS) Gene in Response to Oxidative Stress. Cinque G, Ferino A, Pedersen EB, Xodo LE. Int J Mol Sci 21 E6237 (2020)
  46. Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization. Bell NAW, Haynes PJ, Brunner K, de Oliveira TM, Flocco MM, Hoogenboom BW, Molloy JE. Sci Adv 7 eabf3641 (2021)
  47. Synthesis, preliminarily biological evaluation and molecular docking study of new Olaparib analogues as multifunctional PARP-1 and cholinesterase inhibitors. Gao CZ, Dong W, Cui ZW, Yuan Q, Hu XM, Wu QM, Han X, Xu Y, Min ZL. J Enzyme Inhib Med Chem 34 150-162 (2019)
  48. Truncated PARP1 mediates ADP-ribosylation of RNA polymerase III for apoptosis. Chen Q, Ma K, Liu X, Chen SH, Li P, Yu Y, Leung AKL, Yu X. Cell Discov 8 3 (2022)
  49. An Interaction with PARP-1 and Inhibition of Parylation Contribute to Attenuation of DNA Damage Signaling by the Adenovirus E4orf4 Protein. Nebenzahl-Sharon K, Sharf R, Amer J, Shalata H, Khoury-Haddad H, Sohn SY, Ayoub N, Hearing P, Kleinberger T. J Virol 93 e02253-18 (2019)
  50. Dual function of HPF1 in the modulation of PARP1 and PARP2 activities. Kurgina TA, Moor NA, Kutuzov MM, Naumenko KN, Ukraintsev AA, Lavrik OI. Commun Biol 4 1259 (2021)
  51. SERious Surprises for ADP-Ribosylation Specificity: HPF1 Switches PARP1 Specificity to Ser Residues. Leung AK. Mol Cell 65 777-778 (2017)
  52. Inhibited, trapped or adducted: the optimal selective synthetic lethal mix for BRCAness. Tutt A. Ann Oncol 29 18-21 (2018)
  53. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites. Lin X, Jiang W, Rudolph J, Lee BJ, Luger K, Zha S. Nucleic Acids Res 50 3958-3973 (2022)
  54. Mechanisms of Nucleosome Reorganization by PARP1. Maluchenko NV, Nilov DK, Pushkarev SV, Kotova EY, Gerasimova NS, Kirpichnikov MP, Langelier MF, Pascal JM, Akhtar MS, Feofanov AV, Studitsky VM. Int J Mol Sci 22 12127 (2021)
  55. Computational compensatory mutation discovery approach: Predicting a PARP1 variant rescue mutation. Ravishankar K, Jiang X, Leddin EM, Morcos F, Cisneros GA. Biophys J 121 3663-3673 (2022)
  56. Discovery of pyrano[2,3-d]pyrimidine-2,4-dione derivatives as novel PARP-1 inhibitors: design, synthesis and antitumor activity. Abd El-Sattar NEA, Badawy EHK, Elrazaz EZ, Ismail NSM. RSC Adv 11 4454-4464 (2021)
  57. From PARP1 to TNKS2 Inhibition: A Structure-Based Approach. Tomassi S, Pfahler J, Mautone N, Rovere A, Esposito C, Passeri D, Pellicciari R, Novellino E, Pannek M, Steegborn C, Paiardini A, Mai A, Rotili D. ACS Med Chem Lett 11 862-868 (2020)
  58. Multiple roles for PARP1 in ALC1-dependent nucleosome remodeling. Ooi SK, Sato S, Tomomori-Sato C, Zhang Y, Wen Z, Banks CAS, Washburn MP, Unruh JR, Florens L, Conaway RC, Conaway JW. Proc Natl Acad Sci U S A 118 e2107277118 (2021)
  59. New Quinoxaline-Based Derivatives as PARP-1 Inhibitors: Design, Synthesis, Antiproliferative, and Computational Studies. Syam YM, Anwar MM, Abd El-Karim SS, Elokely KM, Abdelwahed SH. Molecules 27 4924 (2022)
  60. PARP1 associates with R-loops to promote their resolution and genome stability. Laspata N, Kaur P, Mersaoui SY, Muoio D, Liu ZS, Bannister MH, Nguyen HD, Curry C, Pascal JM, Poirier GG, Wang H, Masson JY, Fouquerel E. Nucleic Acids Res 51 2215-2237 (2023)
  61. Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level. Sefer A, Kallis E, Eilert T, Röcker C, Kolesnikova O, Neuhaus D, Eustermann S, Michaelis J. Nat Commun 13 6569 (2022)
  62. TSL-1502, a glucuronide prodrug of a poly (ADP-ribose) polymerase (PARP) inhibitor, exhibits potent anti-tumor activity in preclinical models. Wang L, Zhu X, Li L, Li L, Fu L, Li Y, Fu H, Chen X, Lou L. Am J Cancer Res 11 1632-1645 (2021)
  63. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Suskiewicz MJ, Munnur D, Strømland Ø, Yang JC, Easton LE, Chatrin C, Zhu K, Baretić D, Goffinont S, Schuller M, Wu WF, Elkins JM, Ahel D, Sanyal S, Neuhaus D, Ahel I. Nucleic Acids Res 51 8217-8236 (2023)
  64. Current proteomics methods applicable to dissecting the DNA damage response. Muralidharan M, Krogan NJ, Bouhaddou M, Kim M. NAR Cancer 5 zcad020 (2023)
  65. Molecular basis of hUHRF1 allosteric activation for synergistic histone modification binding by PI5P. Mandal P, Eswara K, Yerkesh Z, Kharchenko V, Zandarashvili L, Szczepski K, Bensaddek D, Jaremko Ł, Black BE, Fischle W. Sci Adv 8 eabl9461 (2022)
  66. Structural basis of tankyrase activation by polymerization. Pillay N, Mariotti L, Zaleska M, Inian O, Jessop M, Hibbs S, Desfosses A, Hopkins PCR, Templeton CM, Beuron F, Morris EP, Guettler S. Nature 612 162-169 (2022)
  67. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel MJ, Poirier GG, Masson JY. NAR Cancer 5 zcad043 (2023)
  68. The structural basis of the multi-step allosteric activation of Aurora B kinase. Segura-Peña D, Hovet O, Gogoi H, Dawicki-McKenna J, Hansen Wøien SM, Carrer M, Black BE, Cascella M, Sekulic N. Elife 12 e85328 (2023)
  69. Tuning drug binding. Slade D, Eustermann S. Science 368 30-31 (2020)
  70. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. Langelier MF, Lin X, Zha S, Pascal JM. Sci Adv 9 eadf7175 (2023)
  71. Deciphering neuroprotective mechanism of nitroxoline in cerebral ischemia: network pharmacology and molecular modeling-based investigations. Vadak N, Borkar MR, Bhatt LK. Mol Divers (2024)
  72. Multi-gene mutation metastatic castrate-resistant prostate cancer. Christy J, Kandah E, Kesari K, Singh T. BMJ Case Rep 14 e243124 (2021)
  73. Novel dual inhibitors of PARP and HDAC induce intratumoral STING-mediated antitumor immunity in triple-negative breast cancer. Zhu Q, Dai Q, Zhao L, Zheng C, Li Q, Yuan Z, Li L, Xie Z, Qiu Z, Huang W, Liu G, Zu X, Chu B, Jiang Y. Cell Death Dis 15 10 (2024)
  74. Novobiocin blocks nucleic acid binding to Polθ and inhibits stimulation of its ATPase activity. Syed A, Filandr F, Patterson-Fortin J, Bacolla A, Ravindranathan R, Zhou J, McDonald DT, Albuhluli ME, Verway-Cohen A, Newman JA, Tsai MS, Jones DE, Schriemer DC, D'Andrea AD, Tainer JA. Nucleic Acids Res 51 9920-9937 (2023)
  75. PET imaging of PARP expression using 68Ga-labelled inhibitors. Wang X, Liu W, Li K, Chen K, He S, Zhang J, Gu B, Xu X, Song S. Eur J Nucl Med Mol Imaging 50 2606-2620 (2023)
  76. Selection of potential natural compounds for poly-ADP-ribose polymerase (PARP) inhibition in glioblastoma therapy by in silico screening methods. Tharamelveliyil Rajendran A, Dheeraj Rajesh G, Kumar P, Shivam Raju Dwivedi P, Shashidhara Shastry C, Narayanan Vadakkepushpakath A. Saudi J Biol Sci 30 103698 (2023)
  77. Slow Dissociation from the PARP1-HPF1 Complex Drives Inhibitor Potency. Stojanovic P, Luger K, Rudolph J. Biochemistry 62 2382-2390 (2023)
  78. Structural and biochemical analysis of the PARP1-homology region of PARP4/vault PARP. Frigon L, Pascal JM. Nucleic Acids Res 51 12492-12507 (2023)
  79. The RNA m5C modification in R-loops as an off switch of Alt-NHEJ. Yang H, Lachtara EM, Ran X, Hopkins J, Patel PS, Zhu X, Xiao Y, Phoon L, Gao B, Zou L, Lawrence MS, Lan L. Nat Commun 14 6114 (2023)
  80. The function and regulation of ADP-ribosylation in the DNA damage response. Duma L, Ahel I. Biochem Soc Trans 51 995-1008 (2023)
  81. Venadaparib Is a Novel and Selective PARP Inhibitor with Improved Physicochemical Properties, Efficacy, and Safety. Lee M, Je IG, Kim JE, Yoo Y, Lim JH, Jang E, Lee Y, Song DK, Moon AN, Kim JA, Jeong J, Park JT, Lee JW, Yang JH, Hong CH, Park SY, Park YW, Baek NS, Lee S, Ha KS, Choi S, Lee WS. Mol Cancer Ther 22 333-342 (2023)