5f7u Citations

Structure to function of an α-glucan metabolic pathway that promotes Listeria monocytogenes pathogenesis.

Nat Microbiol 2 16202 (2016)
Related entries: 4kmq, 5do8, 5f7p, 5f7q, 5f7r, 5f7s, 5f7v

Cited: 17 times
EuropePMC logo PMID: 27819654

Abstract

Here we employ a 'systems structural biology' approach to functionally characterize an unconventional α-glucan metabolic pathway from the food-borne pathogen Listeria monocytogenes (Lm). Crystal structure determination coupled with basic biochemical and biophysical assays allowed for the identification of anabolic, transport, catabolic and regulatory portions of the cycloalternan pathway. These findings provide numerous insights into cycloalternan pathway function and reveal the mechanism of repressor, open reading frame, kinase (ROK) transcription regulators. Moreover, by developing a structural overview we were able to anticipate the cycloalternan pathway's role in the metabolism of partially hydrolysed starch derivatives and demonstrate its involvement in Lm pathogenesis. These findings suggest that the cycloalternan pathway plays a role in interspecies resource competition-potentially within the host gastrointestinal tract-and establish the methodological framework for characterizing bacterial systems of unknown function.

Articles - 5f7u mentioned but not cited (1)

  1. A subfamily classification to choreograph the diverse activities within glycoside hydrolase family 31. Arumapperuma T, Li J, Hornung B, Soler NM, Goddard-Borger ED, Terrapon N, Williams SJ. J Biol Chem 299 103038 (2023)


Articles citing this publication (16)

  1. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA. Nature 562 140-144 (2018)
  2. Transferase Versus Hydrolase: The Role of Conformational Flexibility in Reaction Specificity. Light SH, Cahoon LA, Mahasenan KV, Lee M, Boggess B, Halavaty AS, Mobashery S, Freitag NE, Anderson WF. Structure 25 295-304 (2017)
  3. Alternative σI/anti-σI factors represent a unique form of bacterial σ/anti-σ complex. Wei Z, Chen C, Liu YJ, Dong S, Li J, Qi K, Liu S, Ding X, Ortiz de Ora L, Muñoz-Gutiérrez I, Li Y, Yao H, Lamed R, Bayer EA, Cui Q, Feng Y. Nucleic Acids Res 47 5988-5997 (2019)
  4. Crystal Structure of α-Xylosidase from Aspergillus niger in Complex with a Hydrolyzed Xyloglucan Product and New Insights in Accurately Predicting Substrate Specificities of GH31 Family Glycosidases. Cao H, Walton JD, Brumm P, Phillips GN. ACS Sustain Chem Eng 8 2540-2547 (2020)
  5. Identification of difructose dianhydride I synthase/hydrolase from an oral bacterium establishes a novel glycoside hydrolase family. Kashima T, Okumura K, Ishiwata A, Kaieda M, Terada T, Arakawa T, Yamada C, Shimizu K, Tanaka K, Kitaoka M, Ito Y, Fujita K, Fushinobu S. J Biol Chem 297 101324 (2021)
  6. Structure-function analysis of silkworm sucrose hydrolase uncovers the mechanism of substrate specificity in GH13 subfamily 17 exo-α-glucosidases. Miyazaki T, Park EY. J Biol Chem 295 8784-8797 (2020)
  7. Molecular analysis of cyclic α-maltosyl-(1→6)-maltose binding protein in the bacterial metabolic pathway. Kohno M, Arakawa T, Sunagawa N, Mori T, Igarashi K, Nishimoto T, Fushinobu S. PLoS One 15 e0241912 (2020)
  8. Performance of human and server prediction in CAPRI rounds 38-45. Duan R, Qiu L, Xu X, Ma Z, Merideth BR, Shyu CR, Zou X. Proteins 88 1110-1120 (2020)
  9. Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium. Matsuyama K, Kishine N, Fujimoto Z, Sunagawa N, Kotake T, Tsumuraya Y, Samejima M, Igarashi K, Kaneko S. J Biol Chem 295 18539-18552 (2020)
  10. A Novel Family of Winged-Helix Single-Stranded DNA-Binding Proteins from Archaea. Huang C, Liu X, Chen Y, Zhou J, Li W, Ding N, Huang L, Chen J, Zhang Z. Int J Mol Sci 23 3455 (2022)
  11. Comparison of carbohydrate ABC importers from Mycobacterium tuberculosis. De la Torre LI, Vergara Meza JG, Cabarca S, Costa-Martins AG, Balan A. BMC Genomics 22 841 (2021)
  12. Structural features of a bacterial cyclic α-maltosyl-(1→6)-maltose (CMM) hydrolase critical for CMM recognition and hydrolysis. Kohno M, Arakawa T, Ota H, Mori T, Nishimoto T, Fushinobu S. J Biol Chem 293 16874-16888 (2018)
  13. Analysis of Xylose Operon from Paenibacillus polymyxa ATCC842 and Development of Tools for Gene Expression. Wang Z, Fang Y, Shi Y, Xin Y, Gu Z, Yang T, Li Y, Ding Z, Shi G, Zhang L. Int J Mol Sci 23 5024 (2022)
  14. MenT nucleotidyltransferase toxins extend tRNA acceptor stems and can be inhibited by asymmetrical antitoxin binding. Xu X, Usher B, Gutierrez C, Barriot R, Arrowsmith TJ, Han X, Redder P, Neyrolles O, Blower TR, Genevaux P. Nat Commun 14 4644 (2023)
  15. Novel Oleanolic Acid-Phtalimidines Tethered 1,2,3 Triazole Hybrids as Promising Antibacterial Agents: Design, Synthesis, In Vitro Experiments and In Silico Docking Studies. Lahmadi G, Horchani M, Dbeibia A, Mahdhi A, Romdhane A, Lawson AM, Daïch A, Harrath AH, Ben Jannet H, Othman M. Molecules 28 4655 (2023)
  16. Structure of the transcription open complex of distinct σI factors. Li J, Zhang H, Li D, Liu YJ, Bayer EA, Cui Q, Feng Y, Zhu P. Nat Commun 14 6455 (2023)