5fpp Citations

Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6.

Proc Natl Acad Sci U S A 113 5514-9 (2016)
Cited: 22 times
EuropePMC logo PMID: 27140636

Abstract

Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics.

Articles - 5fpp mentioned but not cited (4)

  1. Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6. Allgardsson A, Berg L, Akfur C, Hörnberg A, Worek F, Linusson A, Ekström FJ. Proc Natl Acad Sci U S A 113 5514-5519 (2016)
  2. Development of a CNS-permeable reactivator for nerve agent exposure: an iterative, multi-disciplinary approach. Bennion BJ, Malfatti MA, Be NA, Enright HA, Hok S, Cadieux CL, Carpenter TS, Lao V, Kuhn EA, McNerney MW, Lightstone FC, Nguyen TH, Valdez CA. Sci Rep 11 15567 (2021)
  3. Molecular Modeling Studies on the Multistep Reactivation Process of Organophosphate-Inhibited Acetylcholinesterase and Butyrylcholinesterase. Jończyk J, Kukułowicz J, Łątka K, Malawska B, Jung YS, Musilek K, Bajda M. Biomolecules 11 169 (2021)
  4. Pyridinium-2-carbaldoximes with quinolinium carboxamide moiety are simultaneous reactivators of acetylcholinesterase and butyrylcholinesterase inhibited by nerve agent surrogates. Lee HM, Andrys R, Jonczyk J, Kim K, Vishakantegowda AG, Malinak D, Skarka A, Schmidt M, Vaskova M, Latka K, Bajda M, Jung YS, Malawska B, Musilek K. J Enzyme Inhib Med Chem 36 437-449 (2021)


Reviews citing this publication (3)

  1. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Gorecki L, Korabecny J, Musilek K, Malinak D, Nepovimova E, Dolezal R, Jun D, Soukup O, Kuca K. Arch Toxicol 90 2831-2859 (2016)
  2. Cholinesterase reactivators and bioscavengers for pre- and post-exposure treatments of organophosphorus poisoning. Masson P, Nachon F. J Neurochem 142 Suppl 2 26-40 (2017)
  3. A Comprehensive Review of Cholinesterase Modeling and Simulation. De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ. Biomolecules 11 580 (2021)

Articles citing this publication (15)

  1. Potent 3-Hydroxy-2-Pyridine Aldoxime Reactivators of Organophosphate-Inhibited Cholinesterases with Predicted Blood-Brain Barrier Penetration. Zorbaz T, Braïki A, Maraković N, Renou J, de la Mora E, Maček Hrvat N, Katalinić M, Silman I, Sussman JL, Mercey G, Gomez C, Mougeot R, Pérez B, Baati R, Nachon F, Weik M, Jean L, Kovarik Z, Renard PY. Chemistry 24 9675-9691 (2018)
  2. Identification of new allosteric sites and modulators of AChE through computational and experimental tools. Roca C, Requena C, Sebastián-Pérez V, Malhotra S, Radoux C, Pérez C, Martinez A, Antonio Páez J, Blundell TL, Campillo NE. J Enzyme Inhib Med Chem 33 1034-1047 (2018)
  3. On the Influence of the Protonation States of Active Site Residues on AChE Reactivation: A QM/MM Approach. Driant T, Nachon F, Ollivier C, Renard PY, Derat E. Chembiochem 18 666-675 (2017)
  4. Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. Gerlits O, Kong X, Cheng X, Wymore T, Blumenthal DK, Taylor P, Radić Z, Kovalevsky A. J Biol Chem 294 10607-10618 (2019)
  5. Synthesis, in vitro screening and molecular docking of isoquinolinium-5-carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators. Malinak D, Dolezal R, Dolezal R, Hepnarova V, Hozova M, Andrys R, Bzonek P, Racakova V, Korabecny J, Gorecki L, Mezeiova E, Psotka M, Jun D, Kuca K, Musilek K. J Enzyme Inhib Med Chem 35 478-488 (2020)
  6. Identification and Study of Biomarkers from Novichok-Inhibited Butyrylcholinesterase in Human Plasma. Jeong WH, Lee JY, Lim KC, Kim HS. Molecules 26 3810 (2021)
  7. 1-(3-Tert-Butylphenyl)-2,2,2-Trifluoroethanone as a Potent Transition-State Analogue Slow-Binding Inhibitor of Human Acetylcholinesterase: Kinetic, MD and QM/MM Studies. Zueva IV, Lushchekina SV, Pottie IR, Darvesh S, Masson P. Biomolecules 10 E1608 (2020)
  8. An Unusual Dimeric Inhibitor of Acetylcholinesterase: Cooperative Binding of Crystal Violet. Allgardsson A, David Andersson C, Akfur C, Worek F, Linusson A, Ekström F. Molecules 22 E1433 (2017)
  9. The structural and biochemical impacts of monomerizing human acetylcholinesterase. Bester SM, Adipietro KA, Funk VL, Myslinski JM, Keul ND, Cheung J, Wilder PT, Wood ZA, Weber DJ, Height JJ, Pegan SD. Protein Sci 28 1106-1114 (2019)
  10. Quantum approach to the mechanism of monothiopyrophosphate isomerization. Paneth A, Paneth P. J Mol Model 25 286 (2019)
  11. Room temperature crystallography of human acetylcholinesterase bound to a substrate analogue 4K-TMA: Towards a neutron structure. Gerlits O, Blakeley MP, Keen DA, Radić Z, Kovalevsky A. Curr Res Struct Biol 3 206-215 (2021)
  12. Broad-Spectrum Antidote Discovery by Untangling the Reactivation Mechanism of Nerve-Agent-Inhibited Acetylcholinesterase. Lindgren C, Forsgren N, Hoster N, Akfur C, Artursson E, Edvinsson L, Svensson R, Worek F, Ekström F, Linusson A. Chemistry 28 e202200678 (2022)
  13. Computational strategy for visualizing structures and teaching biochemistry. Abreu PA, Carvalho KL, Rabelo VW, Castro HC. Biochem Mol Biol Educ 47 76-84 (2019)
  14. Development of versatile and potent monoquaternary reactivators of acetylcholinesterase. Gorecki L, Hepnarova V, Karasova JZ, Hrabinova M, Courageux C, Dias J, Kucera T, Kobrlova T, Muckova L, Prchal L, Malinak D, Jun D, Musilek K, Worek F, Nachon F, Soukup O, Korabecny J. Arch Toxicol 95 985-1001 (2021)
  15. Molecular modeling-guided optimization of acetylcholinesterase reactivators: A proof for reactivation of covalently inhibited targets. Wei Z, Yang J, Liu Y, Nie H, Yao L, Yang J, Guo L, Zheng Z, Ouyang Q. Eur J Med Chem 215 113286 (2021)