5fx2 Citations

Comparison of the crystal structures of a flavodoxin in its three oxidation states at cryogenic temperatures.

J Mol Biol 218 195-208 (1991)
Related entries: 2fx2, 3fx2, 4fx2

Cited: 89 times
EuropePMC logo PMID: 2002503

Abstract

The focus of this study has been to determine the conformation of the holoprotein of recombinant flavodoxin from Desulfovibrio vulgaris with the FMN in each of its three oxidation states. The structures of the oxidized state of the wild-type flavodoxin at 2.0 A from D. vulgaris was used as a starting model for refinement. Diffraction experiments were conducted at low temperature (-150 degrees C) in order to maintain the oxidation state of interest throughout the intensity data collection. yellow bipyramids by the standard hanging-drop method from 3.2 M-ammonium sulfate in 0.1 M-Tris-HCl buffer at pH 7.0 with protein concentrations ranging from 0.7% to 0.9%. The reduced states of the crystals were achieved through the addition of sodium dithionite at pH 7.0 for the semiquinone (semi-reduced) and at pH 9.0 for the hydroquinone (fully reduced). Data sets consisting of one at room temperature (oxidized state) and three at low temperature (each oxidation state) were collected on a Nicolet P3F/Xentronics area detector X-ray diffractometer system. The four structures, hydroquinone at 2.25 A resolution and all others at 1.9 A resolution, were refined by the restrained parameter least-squares program PROLSQ. The final crystallographic R-values converged to 0.21 (hydroquinone), 0.20 (semiquinone), 0.20 (oxidized, low temperature), and 0.17 (oxidized, room temperature). The reduced states of flavodoxin show a different conformation of the protein polypeptide chain (Asp61-Gly62) in the vicinity of NH(5) of the isoalloxazine group relative to the oxidized state. However, there are only slight conformational differences between the semiquinone and hydroquinone states. In this report, structural comparisons of the three are made, with particular emphasis on the features that might be related to the difference in temperature of the diffraction data collections and differences in the oxidation state of the FMN.

Articles - 5fx2 mentioned but not cited (3)

  1. Fast protein loop sampling and structure prediction using distance-guided sequential chain-growth Monte Carlo method. Tang K, Zhang J, Liang J. PLoS Comput Biol 10 e1003539 (2014)
  2. Modeling large regions in proteins: applications to loops, termini, and folding. Adhikari AN, Peng J, Wilde M, Xu J, Freed KF, Sosnick TR. Protein Sci 21 107-121 (2012)
  3. Crystal structure of dimeric flavodoxin from Desulfovibrio gigas suggests a potential binding region for the electron-transferring partner. Hsieh YC, Chia TS, Fun HK, Chen CJ. Int J Mol Sci 14 1667-1683 (2013)


Reviews citing this publication (9)

  1. Cryocrystallography. Rodgers DW. Structure 2 1135-1140 (1994)
  2. Progress towards understanding beta-sheet structure. Nesloney CL, Kelly JW. Bioorg Med Chem 4 739-766 (1996)
  3. Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH--ubiquinone oxidoreductase (Complex I). Albracht SP, Hedderich R. FEBS Lett 485 1-6 (2000)
  4. Structural and mechanistic aspects of flavoproteins: photosynthetic electron transfer from photosystem I to NADP+. Medina M. FEBS J 276 3942-3958 (2009)
  5. Freeze trapping of reaction intermediates. Moffat K, Henderson R. Curr Opin Struct Biol 5 656-663 (1995)
  6. Redox control of protein conformation in flavoproteins. Senda T, Senda M, Kimura S, Ishida T. Antioxid Redox Signal 11 1741-1766 (2009)
  7. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer. Albracht SP, Meijer AJ, Rydström J. J Bioenerg Biomembr 43 541-564 (2011)
  8. Folding of proteins with a flavodoxin-like architecture. Houwman JA, van Mierlo CPM. FEBS J 284 3145-3167 (2017)
  9. Electron supply and catalytic oxidation of nitrogen by cytochrome P450 and nitric oxide synthase. Nishida CR, Knudsen G, Straub W, Ortiz de Montellano PR. Drug Metab Rev 34 479-501 (2002)

Articles citing this publication (77)

  1. Structure of a cytochrome P450-redox partner electron-transfer complex. Sevrioukova IF, Li H, Zhang H, Peterson JA, Poulos TL. Proc Natl Acad Sci U S A 96 1863-1868 (1999)
  2. CH-π hydrogen bonds in biological macromolecules. Nishio M, Umezawa Y, Fantini J, Weiss MS, Chakrabarti P. Phys Chem Chem Phys 16 12648-12683 (2014)
  3. Multiple protein structure alignment. Taylor WR, Flores TP, Orengo CA. Protein Sci 3 1858-1870 (1994)
  4. Reversible lattice repacking illustrates the temperature dependence of macromolecular interactions. Juers DH, Matthews BW. J Mol Biol 311 851-862 (2001)
  5. Assigning secondary structure from protein coordinate data. King SM, Johnson WC. Proteins 35 313-320 (1999)
  6. Self-consistent 3J coupling analysis for the joint calibration of Karplus coefficients and evaluation of torsion angles. Schmidt JM, Blümel M, Löhr F, Rüterjans H. J Biomol NMR 14 1-12 (1999)
  7. Letter Closure of a tyrosine/tryptophan aromatic gate leads to a compact fold in apo flavodoxin. Genzor CG, Perales-Alcón A, Sancho J, Romero A. Nat Struct Biol 3 329-332 (1996)
  8. Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 A resolution. Zhao Q, Modi S, Smith G, Paine M, McDonagh PD, Wolf CR, Tew D, Lian LY, Roberts GC, Driessen HP. Protein Sci 8 298-306 (1999)
  9. Structure of the oxidized long-chain flavodoxin from Anabaena 7120 at 2 A resolution. Rao ST, Shaffie F, Yu C, Satyshur KA, Stockman BJ, Markley JL, Sundarlingam M. Protein Sci 1 1413-1427 (1992)
  10. X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. Breithaupt C, Strassner J, Breitinger U, Huber R, Macheroux P, Schaller A, Clausen T. Structure 9 419-429 (2001)
  11. Six new candidate members of the alpha/beta twisted open-sheet family detected by sequence similarity to flavodoxin. Grandori R, Carey J. Protein Sci 3 2185-2193 (1994)
  12. A crystallographic study of Cys69Ala flavodoxin II from Azotobacter vinelandii: structural determinants of redox potential. Alagaratnam S, van Pouderoyen G, Pijning T, Dijkstra BW, Cavazzini D, Rossi GL, Van Dongen WM, van Mierlo CP, van Berkel WJ, Canters GW. Protein Sci 14 2284-2295 (2005)
  13. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials. Hoover DM, Drennan CL, Metzger AL, Osborne C, Weber CH, Pattridge KA, Ludwig ML. J Mol Biol 294 725-743 (1999)
  14. Mapping solvation dynamics at the function site of flavodoxin in three redox states. Chang CW, He TF, Guo L, Stevens JA, Li T, Wang L, Zhong D. J Am Chem Soc 132 12741-12747 (2010)
  15. Energetics of a hydrogen bond (charged and neutral) and of a cation-pi interaction in apoflavodoxin. Fernández-Recio J, Romero A, Sancho J. J Mol Biol 290 319-330 (1999)
  16. Crystal structure of oxidized flavodoxin from a red alga Chondrus crispus refined at 1.8 A resolution. Description of the flavin mononucleotide binding site. Fukuyama K, Matsubara H, Rogers LJ. J Mol Biol 225 775-789 (1992)
  17. Exploring the electron transfer properties of neuronal nitric-oxide synthase by reversal of the FMN redox potential. Li H, Das A, Sibhatu H, Jamal J, Sligar SG, Poulos TL. J Biol Chem 283 34762-34772 (2008)
  18. 1H dynamic nuclear polarization based on an endogenous radical. Maly T, Cui D, Griffin RG, Miller AF. J Phys Chem B 116 7055-7065 (2012)
  19. Homonuclear and heteronuclear NMR studies of oxidized Desulfovibrio vulgaris flavodoxin. Sequential assignments and identification of secondary structure elements. Knauf MA, Löhr F, Curley GP, O'Farrell P, Mayhew SG, Müller F, Rüterjans H. Eur J Biochem 213 167-184 (1993)
  20. Asymmetric Karplus curves for the protein side-chain 3J couplings. Schmidt JM. J Biomol NMR 37 287-301 (2007)
  21. High-resolution crystal structures of the flavoprotein NrdI in oxidized and reduced states--an unusual flavodoxin. Structural biology. Johansson R, Torrents E, Lundin D, Sprenger J, Sahlin M, Sjöberg BM, Logan DT. FEBS J 277 4265-4277 (2010)
  22. Crystal structure of flavodoxin from Desulfovibrio desulfuricans ATCC 27774 in two oxidation states. Romero A, Caldeira J, Legall J, Moura I, Moura JJ, Romao MJ. Eur J Biochem 239 190-196 (1996)
  23. Cloning and characterization of the NADPH cytochrome P450 oxidoreductase gene from the filamentous fungus Aspergillus niger. van den Brink HJ, van Zeijl CM, Brons JF, van den Hondel CA, van Gorcom RF. DNA Cell Biol 14 719-729 (1995)
  24. 1H, 15N and 13C NMR resonance assignment, secondary structure and global fold of the FMN-binding domain of human cytochrome P450 reductase. Barsukov I, Modi S, Lian LY, Sze KH, Paine MJ, Wolf CR, Roberts GC. J Biomol NMR 10 63-75 (1997)
  25. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39. Lanzilotta WN, Fisher K, Seefeldt LC. J Biol Chem 272 4157-4165 (1997)
  26. Flavin dynamics in reduced flavodoxins. A time-resolved polarized fluorescence study. Leenders R, Kooijman M, van Hoek A, Veeger C, Visser AJ. Eur J Biochem 211 37-45 (1993)
  27. Anabaena apoflavodoxin hydrogen exchange: on the stable exchange core of the alpha/beta(21345) flavodoxin-like family. Langdon GM, Jiménez MA, Genzor CG, Maldonado S, Sancho J, Rico M. Proteins 43 476-488 (2001)
  28. Femtosecond dynamics of short-range protein electron transfer in flavodoxin. He TF, Guo L, Guo X, Chang CW, Wang L, Zhong D. Biochemistry 52 9120-9128 (2013)
  29. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations. Kundu M, He TF, Lu Y, Wang L, Zhong D. J Phys Chem Lett 9 2782-2790 (2018)
  30. Analysis of the oxidation-reduction potentials of recombinant ferredoxin-NADP+ reductase from spinach chloroplasts. Corrado ME, Aliverti A, Zanetti G, Mayhew SG. Eur J Biochem 239 662-667 (1996)
  31. Crystal structure of a flavoprotein related to the subunits of bacterial luciferase. Moore SA, James MN, O'Kane DJ, Lee J. EMBO J 12 1767-1774 (1993)
  32. Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers. Campbell IJ, Bennett GN, Silberg JJ. Front Energy Res 7 (2019)
  33. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations. Soares CM, Martel PJ, Mendes J, Carrondo MA. Biophys J 74 1708-1721 (1998)
  34. Characterization of a redox-active cross-linked complex between cyanobacterial photosystem I and its physiological acceptor flavodoxin. Mühlenhoff U, Kruip J, Bryant DA, Rögner M, Sétif P, Boekema E. EMBO J 15 488-497 (1996)
  35. Mutants of Cytochrome P450 Reductase Lacking Either Gly-141 or Gly-143 Destabilize Its FMN Semiquinone. Rwere F, Xia C, Im S, Haque MM, Stuehr DJ, Waskell L, Kim JJ. J Biol Chem 291 14639-14661 (2016)
  36. NMR investigation of the solution conformation of oxidized flavodoxin from Desulfovibrio vulgaris. Determination of the tertiary structure and detection of protein-bound water molecules. Knauf MA, Löhr F, Blümel M, Mayhew SG, Rüterjans H. Eur J Biochem 238 423-434 (1996)
  37. Redox potentials of ubiquinone, menaquinone, phylloquinone, and plastoquinone in aqueous solution. Kishi S, Saito K, Kato Y, Ishikita H. Photosynth Res 134 193-200 (2017)
  38. Common conformational changes in flavodoxins induced by FMN and anion binding: the structure of Helicobacter pylori apoflavodoxin. Martínez-Júlvez M, Cremades N, Bueno M, Pérez-Dorado I, Maya C, Cuesta-López S, Prada D, Falo F, Hermoso JA, Sancho J. Proteins 69 581-594 (2007)
  39. Dynamic Determination of Active-Site Reactivity in Semiquinone Photolyase by the Cofactor Photoreduction. Liu Z, Tan C, Guo X, Li J, Wang L, Zhong D. J Phys Chem Lett 5 820-825 (2014)
  40. Refined structures of oxidized flavodoxin from Anacystis nidulans. Drennan CL, Pattridge KA, Weber CH, Metzger AL, Hoover DM, Ludwig ML. J Mol Biol 294 711-724 (1999)
  41. The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein. Dwyer TM, Zhang L, Muller M, Marrugo F, Frerman F. Biochim Biophys Acta 1433 139-152 (1999)
  42. Crystal structure of the reduced form of p-hydroxybenzoate hydroxylase refined at 2.3 A resolution. Schreuder HA, van der Laan JM, Swarte MB, Kalk KH, Hol WG, Drenth J. Proteins 14 178-190 (1992)
  43. Possible role of a short extra loop of the long-chain flavodoxin from Azotobacter chroococcum in electron transfer to nitrogenase: complete 1H, 15N and 13C backbone assignments and secondary solution structure of the flavodoxin. Peelen S, Wijmenga S, Erbel PJ, Robson RL, Eady RR, Vervoort J. J Biomol NMR 7 315-330 (1996)
  44. The Electronic State of Flavoproteins: Investigations with Proton Electron-Nuclear Double Resonance. Schleicher E, Wenzel R, Ahmad M, Batschauer A, Essen LO, Hitomi K, Getzoff ED, Bittl R, Weber S, Okafuji A. Appl Magn Reson 37 339-352 (2010)
  45. Direct measurement of reactivity in the protein crystal by steady-state kinetic studies. Stoddard BL, Farber GK. Structure 3 991-996 (1995)
  46. Modulation of characteristics of a ruthenium-coordinated flavin analogue that shows an unusual coordination mode. Miyazaki S, Ohkubo K, Kojima T, Fukuzumi S. Angew Chem Int Ed Engl 46 905-908 (2007)
  47. Molecular dynamics simulations of oxidized and reduced Clostridium beijerinckii flavodoxin. Leenders R, van Gunsteren WF, Berendsen HJ, Visser AJ. Biophys J 66 634-645 (1994)
  48. Tuning of the FMN binding and oxido-reduction properties by neighboring side chains in Anabaena flavodoxin. Frago S, Goñi G, Herguedas B, Peregrina JR, Serrano A, Perez-Dorado I, Molina R, Gómez-Moreno C, Hermoso JA, Martínez-Júlvez M, Mayhew SG, Medina M. Arch Biochem Biophys 467 206-217 (2007)
  49. WrpA Is an Atypical Flavodoxin Family Protein under Regulatory Control of the Brucella abortus General Stress Response System. Herrou J, Czyż DM, Willett JW, Kim HS, Chhor G, Babnigg G, Kim Y, Crosson S. J Bacteriol 198 1281-1293 (2016)
  50. 1H and 15N resonance assignments and solution secondary structure of oxidized Desulfovibrio vulgaris flavodoxin determined by heteronuclear three-dimensional NMR spectroscopy. Stockman BJ, Euvrard A, Kloosterman DA, Scahill TA, Swenson RP. J Biomol NMR 3 133-149 (1993)
  51. A versatile component-coupling model to account for substituent effects: application to polypeptide phi and chi(1) torsion related (3)J data. Schmidt JM. J Magn Reson 186 34-50 (2007)
  52. Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution. Hrovat A, Blümel M, Löhr F, Mayhew SG, Rüterjans H. J Biomol NMR 10 53-62 (1997)
  53. 3D-structures of the lipase from Rhizomucor miehei at different temperatures and computer modelling of a complex of the lipase with trilaurylglycerol. Vasel B, Hecht HJ, Schmid RD, Schomburg D. J Biotechnol 28 99-115 (1993)
  54. Combining Laue diffraction and molecular dynamics to study enzyme intermediates. Stoddard BL, Dean A, Bash PA. Nat Struct Biol 3 590-595 (1996)
  55. Engineering multi-domain redox proteins containing flavodoxin as bio-transformer: preparatory studies by rational design. Valetti F, Sadeghi SJ, Meharenna YT, Leliveld SR, Gilardi G. Biosens Bioelectron 13 675-685 (1998)
  56. Primary sequence, oxidation-reduction potentials and tertiary-structure prediction of Desulfovibrio desulfuricans ATCC 27774 flavodoxin. Caldeira J, Palma PN, Regalla M, Lampreia J, Calvete J, Schäfer W, Legall J, Moura I, Moura JJ. Eur J Biochem 220 987-995 (1994)
  57. Structure and function of an unusual flavodoxin from the domain Archaea. Prakash D, Iyer PR, Suharti S, Walters KA, Santiago-Martinez MG, Golbeck JH, Murakami KS, Ferry JG. Proc Natl Acad Sci U S A 116 25917-25922 (2019)
  58. Alternative E.COSY techniques for the measurement of 3J(C (i) (') (-1),C (i) (beta) ) and (3) J(H (i) (N) ,C (i) (beta) ) coupling constants in proteins. Löhr F, Rüterjans H. J Biomol NMR 13 263-274 (1999)
  59. Heteronuclear relayed E.COSY applied to the determination of accurate 3J(HN,C') and 3J(H beta,C') coupling constants in desulfovibrio vulgaris flavodoxin. Schmidt JM, Löhr F, Rüterjans H. J Biomol NMR 7 142-152 (1996)
  60. Heteronuclear relayed E.COSY revisited: determination of 3J(H(alpha),C(gamma)) couplings in Asx and aromatic residues in proteins. Löhr F, Pérez C, Köhler R, Rüterjans H, Schmidt JM. J Biomol NMR 18 13-22 (2000)
  61. The special role of B(C6F5)3 in the single electron reduction of quinones by radicals. Tao X, Daniliuc CG, Knitsch R, Hansen MR, Eckert H, Lübbesmeyer M, Studer A, Kehr G, Erker G. Chem Sci 9 8011-8018 (2018)
  62. Letter 1H, 13C and 15N assignment of the hydroquinone form of flavodoxin from Desulfovibrio vulgaris (Hildenborough) and comparison of the chemical shift differences with respect to the oxidized state. Yalloway GN, Löhr F, Wienk HL, Mayhew SG, Hrovat A, Knauf MA, Rüterjans H. J Biomol NMR 25 257-258 (2003)
  63. NMR assignments, secondary structure and hydration of oxidized Escherichia coli flavodoxin. Ponstingl H, Otting G. Eur J Biochem 244 384-399 (1997)
  64. Intrinsic property of flavin mononucleotide controls its optical spectra in three redox states. Ai YJ, Tian G, Liao RZ, Liao RZ, Zhang Q, Fang WH, Luo Y. Chemphyschem 12 2899-2902 (2011)
  65. 1.2 Å resolution crystal structure of Escherichia coli WrbA holoprotein. Kishko I, Carey J, Reha D, Brynda J, Winkler R, Harish B, Guerra R, Ettrichova O, Kukacka Z, Sheryemyetyeva O, Novak P, Kuty M, Kuta Smatanova I, Ettrich R, Lapkouski M. Acta Crystallogr D Biol Crystallogr 69 1748-1757 (2013)
  66. 1H and 15N NMR resonance assignments and solution secondary structure of oxidized Desulfovibrio desulfuricans flavodoxin. Pollock JR, Swenson RP, Stockman BJ. J Biomol NMR 7 225-235 (1996)
  67. 1H-NMR and photo-CIDNP spectroscopies show a possible role for Trp23 and Phe31 in nucleic acid binding by P2 ribonuclease from the archaeon Sulfolobus solfataricus. Consonni R, Limiroli R, Molinari H, Fusi P, Grisa M, Vanoni M, Tortora P. FEBS Lett 372 135-139 (1995)
  68. Letter Performance of Protein-Ligand Force Fields for the Flavodoxin-Flavin Mononucleotide System. Robertson MJ, Tirado-Rives J, Jorgensen WL. J Phys Chem Lett 7 3032-3036 (2016)
  69. Efficient measurement of (3)J(N,Cgamma) and (3)J(C',Cgamma) coupling constants of aromatic residues in (13)C, (15)N-labeled proteins. Löhr F, Rüterjans H. J Magn Reson 146 126-131 (2000)
  70. Flavodoxin with an air-stable flavin semiquinone in a green sulfur bacterium. Bertsova YV, Kulik LV, Mamedov MD, Baykov AA, Bogachev AV. Photosynth Res 142 127-136 (2019)
  71. Cofactor-apoprotein hydrogen bonding in oxidized and fully reduced flavodoxin monitored by trans-hydrogen-bond scalar couplings. Löhr F, Yalloway GN, Mayhew SG, Rüterjans H. Chembiochem 5 1523-1534 (2004)
  72. Modulation of the flavin-protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study. Keirsse-Haquin J, Picaud T, Bordes L, de Gracia AG, Desbois A. Eur Biophys J 47 205-223 (2018)
  73. Structural insight into the high reduction potentials observed for Fusobacterium nucleatum flavodoxin. Mothersole RG, Macdonald M, Kolesnikov M, Murphy MEP, Wolthers KR. Protein Sci 28 1460-1472 (2019)
  74. Time-resolved tryptophan fluorescence in flavodoxins. Leenders R, Roslund J, Visser AJ. J Fluoresc 5 349-353 (1995)
  75. Assessing the Performance of Non-Equilibrium Thermodynamic Integration in Flavodoxin Redox Potential Estimation. Silvestri G, Arrigoni F, Persico F, Bertini L, Zampella G, De Gioia L, Vertemara J. Molecules 28 6016 (2023)
  76. Flavodoxin relaxes in microseconds upon excitation of the flavin chromophore: detection of a UV-visible silent intermediate by laser photocalorimetry. Martínez-Junza V, Rizzi AC, Alagaratnam S, Bell TD, Canters GW, Braslavsky SE. Photochem Photobiol 85 107-110 (2009)
  77. Short-lived neutral FMN and FAD semiquinones are transient intermediates in cryo-reduced yeast NADPH-cytochrome P450 reductase. Davydov RM, Jennings G, Hoffman BM, Podust LM. Arch Biochem Biophys 673 108080 (2019)


Related citations provided by authors (5)

  1. Cloning, Nucleotide Sequence, and Expression of the Flavodoxin Gene from Disulfovibrio Vulgaris (Hildenborough). Krey GD, Vanin EF, Swenson RP J. Biol. Chem. 218 15436- (1988)
  2. A Crystallographic Structural Study of the Oxidation States of Desulfovibrio Vulgaris Flavodoxin. Watenpaugh KD, Sieker LC, Jensen LH Flavins and Flavoproteins 405- (1976)
  3. Flavin Mononucleotide Conformation and Environment in Flavodoxin from Desulfovibrio Vulgaris. Watenpaugh KD, Sieker LC, Jensen LH STRUCTURE AND CONFORMATION OF NUCLEIC ACIDS AND PROTEIN-NUCLEIC ACID INTERACTIONS : PROCEEDINGS OF THE FOURTH ANNUAL HARRY STEENBOCK SYMPOSIUM, JUNE 16-19, 1974, MADISON, WISCONSIN 431- (1975)
  4. The Binding of Riboflavin-5-Phosphate in a Flavoprotein. Flavodoxin at 2.0-Angstroms Resolution. Watenpaugh KD, Sieker LC, Jensen LH Proc. Natl. Acad. Sci. U.S.A. 70 3857- (1973)
  5. Structure of the Oxidized Form of a Flavodoxin at 2.5-Angstroms Resolution. Resolution of the Phase Ambiguity by Anomalous Scattering. Watenpaugh KD, Sieker LC, Jensen LH, Legall J, Dubourdieu M Proc. Natl. Acad. Sci. U.S.A. 69 3185- (1972)