5g2y Citations

Structure of a group II intron in complex with its reverse transcriptase.

OpenAccess logo Nat Struct Mol Biol 23 549-57 (2016)
Cited: 69 times
EuropePMC logo PMID: 27136327

Abstract

Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.

Reviews - 5g2y mentioned but not cited (2)

  1. Unraveling the structure and biological functions of RNA triple helices. Brown JA. Wiley Interdiscip Rev RNA 11 e1598 (2020)
  2. Structural Insights into the Mechanism of Group II Intron Splicing. Zhao C, Pyle AM. Trends Biochem Sci 42 470-482 (2017)

Articles - 5g2y mentioned but not cited (1)



Reviews citing this publication (20)

  1. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  2. Using bioinformatic and phylogenetic approaches to classify transposable elements and understand their complex evolutionary histories. Arkhipova IR. Mob DNA 8 19 (2017)
  3. Mobile Group II Introns as Ancestral Eukaryotic Elements. Novikova O, Belfort M. Trends Genet 33 773-783 (2017)
  4. Retrons and their applications in genome engineering. Simon AJ, Ellington AD, Finkelstein IJ. Nucleic Acids Res 47 11007-11019 (2019)
  5. Structural Biology of Telomerase. Wang Y, Sušac L, Feigon J. Cold Spring Harb Perspect Biol 11 a032383 (2019)
  6. Cryo-EM advances in RNA structure determination. Ma H, Jia X, Zhang K, Su Z. Signal Transduct Target Ther 7 58 (2022)
  7. Organellar Introns in Fungi, Algae, and Plants. Mukhopadhyay J, Hausner G. Cells 10 2001 (2021)
  8. Group II Intron RNPs and Reverse Transcriptases: From Retroelements to Research Tools. Belfort M, Lambowitz AM. Cold Spring Harb Perspect Biol 11 a032375 (2019)
  9. Domestication of self-splicing introns during eukaryogenesis: the rise of the complex spliceosomal machinery. Vosseberg J, Snel B. Biol Direct 12 30 (2017)
  10. Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy. Zhang H, Keane SC. Wiley Interdiscip Rev RNA 10 e1541 (2019)
  11. Computational modeling of RNA 3D structure based on experimental data. Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM. Biosci Rep 39 BSR20180430 (2019)
  12. Structural biology of telomerase and its interaction at telomeres. Wang Y, Feigon J. Curr Opin Struct Biol 47 77-87 (2017)
  13. Prokaryotic reverse transcriptases: from retroelements to specialized defense systems. González-Delgado A, Mestre MR, Martínez-Abarca F, Toro N. FEMS Microbiol Rev 45 fuab025 (2021)
  14. The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand. Zhao C, Pyle AM. Curr Opin Struct Biol 47 30-39 (2017)
  15. RNA Characterization by Solid-State NMR Spectroscopy. Yang Y, Wang S. Chemistry 24 8698-8707 (2018)
  16. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution. Toro N, Martínez-Abarca F, Molina-Sánchez MD, García-Rodríguez FM, Nisa-Martínez R. Front Microbiol 9 627 (2018)
  17. Single-Molecule Analysis of Reverse Transcriptase Enzymes. Jansson LI, Stone MD. Cold Spring Harb Perspect Biol 11 a032458 (2019)
  18. Structural dynamics of the N-terminal domain and the Switch loop of Prp8 during spliceosome assembly and activation. Jia X, Sun C. Nucleic Acids Res 46 3833-3840 (2018)
  19. Biological cryo-electron microscopy in China. Wang HW, Lei J, Shi Y. Protein Sci 26 16-31 (2017)
  20. Group II Intron-Encoded Proteins (IEPs/Maturases) as Key Regulators of Nad1 Expression and Complex I Biogenesis in Land Plant Mitochondria. Mizrahi R, Shevtsov-Tal S, Ostersetzer-Biran O. Genes (Basel) 13 1137 (2022)

Articles citing this publication (46)

  1. Structure of Telomerase with Telomeric DNA. Jiang J, Wang Y, Sušac L, Chan H, Basu R, Zhou ZH, Feigon J. Cell 173 1179-1190.e13 (2018)
  2. The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria. Sultan LD, Mileshina D, Grewe F, Rolle K, Abudraham S, Głodowicz P, Niazi AK, Keren I, Shevtsov S, Klipcan L, Barciszewski J, Mower JP, Dietrich A, Ostersetzer-Biran O. Plant Cell 28 2805-2829 (2016)
  3. Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Stamos JL, Lentzsch AM, Lambowitz AM. Mol Cell 68 926-939.e4 (2017)
  4. Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey. Wu L, Gingery M, Abebe M, Arambula D, Czornyj E, Handa S, Khan H, Liu M, Pohlschroder M, Shaw KL, Du A, Guo H, Ghosh P, Miller JF, Zimmerly S. Nucleic Acids Res 46 11-24 (2018)
  5. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3΄ end of its 5΄-half intron. Wang C, Aubé F, Planchard N, Quadrado M, Dargel-Graffin C, Nogué F, Mireau H. Nucleic Acids Res 45 6119-6134 (2017)
  6. Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing. Green CM, Li Z, Smith AD, Novikova O, Bacot-Davis VR, Gao F, Hu S, Banavali NK, Thiele DJ, Li H, Belfort M. PLoS Biol 17 e3000104 (2019)
  7. Analysis of the Roles of the Arabidopsis nMAT2 and PMH2 Proteins Provided with New Insights into the Regulation of Group II Intron Splicing in Land-Plant Mitochondria. Zmudjak M, Shevtsov S, Sultan LD, Keren I, Ostersetzer-Biran O. Int J Mol Sci 18 E2428 (2017)
  8. A structurally conserved human and Tetrahymena telomerase catalytic core. Wang Y, Gallagher-Jones M, Sušac L, Song H, Feigon J. Proc Natl Acad Sci U S A 117 31078-31087 (2020)
  9. Small molecule-RNA targeting: starting with the fundamentals. Hargrove AE. Chem Commun (Camb) 56 14744-14756 (2020)
  10. Hoarding and horizontal transfer led to an expanded gene and intron repertoire in the plastid genome of the diatom, Toxarium undulatum (Bacillariophyta). Ruck EC, Linard SR, Nakov T, Theriot EC, Alverson AJ. Curr Genet 63 499-507 (2017)
  11. Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Handa S, Jiang Y, Tao S, Foreman R, Schinazi RF, Miller JF, Ghosh P. Nucleic Acids Res 46 9711-9725 (2018)
  12. Sub-3-Å cryo-EM structure of RNA enabled by engineered homomeric self-assembly. Liu D, Thélot FA, Piccirilli JA, Liao M, Yin P. Nat Methods 19 576-585 (2022)
  13. Forks in the tracks: Group II introns, spliceosomes, telomeres and beyond. Agrawal RK, Wang HW, Belfort M. RNA Biol 13 1218-1222 (2016)
  14. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting. Qu G, Piazza CL, Smith D, Belfort M. Elife 7 e34268 (2018)
  15. Structural basis for template switching by a group II intron-encoded non-LTR-retroelement reverse transcriptase. Lentzsch AM, Stamos JL, Yao J, Russell R, Lambowitz AM. J Biol Chem 297 100971 (2021)
  16. Ectopic Transplastomic Expression of a Synthetic MatK Gene Leads to Cotyledon-Specific Leaf Variegation. Qu Y, Legen J, Arndt J, Henkel S, Hoppe G, Thieme C, Ranzini G, Muino JM, Weihe A, Ohler U, Weber G, Ostersetzer O, Schmitz-Linneweber C. Front Plant Sci 9 1453 (2018)
  17. Visualizing group II intron dynamics between the first and second steps of splicing. Manigrasso J, Chillón I, Genna V, Vidossich P, Somarowthu S, Pyle AM, De Vivo M, Marcia M. Nat Commun 11 2837 (2020)
  18. A group II intron-encoded protein interacts with the cellular replicative machinery through the β-sliding clamp. García-Rodríguez FM, Neira JL, Marcia M, Molina-Sánchez MD, Toro N. Nucleic Acids Res 47 7605-7617 (2019)
  19. Functionalized graphene grids with various charges for single-particle cryo-EM. Lu Y, Liu N, Liu Y, Zheng L, Yang J, Wang J, Jia X, Zi Q, Peng H, Rao Y, Wang HW. Nat Commun 13 6718 (2022)
  20. Metal ions and sugar puckering balance single-molecule kinetic heterogeneity in RNA and DNA tertiary contacts. Steffen FD, Khier M, Kowerko D, Cunha RA, Börner R, Sigel RKO. Nat Commun 11 104 (2020)
  21. A Highly Proliferative Group IIC Intron from Geobacillus stearothermophilus Reveals New Features of Group II Intron Mobility and Splicing. Mohr G, Kang SY, Park SK, Qin Y, Grohman J, Yao J, Stamos JL, Lambowitz AM. J Mol Biol 430 2760-2783 (2018)
  22. Group II intron as cold sensor for self-preservation and bacterial conjugation. Dong X, Qu G, Piazza CL, Belfort M. Nucleic Acids Res 48 6198-6209 (2020)
  23. Reverse transcriptases lend a hand in splicing catalysis. Piccirilli JA, Staley JP. Nat Struct Mol Biol 23 507-509 (2016)
  24. A RanBP2-type zinc finger protein functions in intron splicing in Arabidopsis mitochondria and is involved in the biogenesis of respiratory complex I. Bentolila S, Gipson AB, Kehl AJ, Hamm LN, Hayes ML, Mulligan RM, Hanson MR. Nucleic Acids Res 49 3490-3506 (2021)
  25. Exon and protein positioning in a pre-catalytic group II intron RNP primed for splicing. Liu N, Dong X, Hu C, Zeng J, Wang J, Wang J, Wang HW, Belfort M. Nucleic Acids Res 48 11185-11198 (2020)
  26. An overview of RNA splicing and functioning of splicing factors in land plant chloroplasts. Wang X, Wang J, Li S, Lu C, Sui N. RNA Biol 19 897-907 (2022)
  27. Integrating Phylogenetics With Intron Positions Illuminates the Origin of the Complex Spliceosome. Vosseberg J, Stolker D, von der Dunk SHA, Snel B. Mol Biol Evol 40 msad011 (2023)
  28. Structural accommodations accompanying splicing of a group II intron RNP. Dong X, Ranganathan S, Qu G, Piazza CL, Belfort M. Nucleic Acids Res 46 8542-8556 (2018)
  29. Structures of a mobile intron retroelement poised to attack its structured DNA target. Chung K, Xu L, Chai P, Peng J, Devarkar SC, Pyle AM. Science 378 627-634 (2022)
  30. Two genetic codes: Repetitive syntax for active non-coding RNAs; non-repetitive syntax for the DNA archives. Witzany G. Commun Integr Biol 10 e1297352 (2017)
  31. Direct tracking of reverse-transcriptase speed and template sensitivity: implications for sequencing and analysis of long RNA molecules. Guo LT, Olson S, Patel S, Graveley BR, Pyle AM. Nucleic Acids Res 50 6980-6989 (2022)
  32. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles. Molina-Sánchez MD, García-Rodríguez FM, Toro N. Front Mol Biosci 3 58 (2016)
  33. LocalSTAR3D: a local stack-based RNA 3D structural alignment tool. Chen X, Khan NS, Zhang S. Nucleic Acids Res 48 e77 (2020)
  34. A new RNA-DNA interaction required for integration of group II intron retrotransposons into DNA targets. Monachello D, Lauraine M, Gillot S, Michel F, Costa M. Nucleic Acids Res 49 12394-12410 (2021)
  35. Determinants of adenine-mutagenesis in diversity-generating retroelements. Handa S, Reyna A, Wiryaman T, Ghosh P. Nucleic Acids Res 49 1033-1045 (2021)
  36. Globular domain structure and function of restriction-like-endonuclease LINEs: similarities to eukaryotic splicing factor Prp8. Mahbub MM, Chowdhury SM, Christensen SM. Mob DNA 8 16 (2017)
  37. Group II introns in wheat mitochondria have degenerate structural features and varied splicing pathways. Ngu M, Massel K, Bonen L. Int J Biochem Cell Biol 91 156-167 (2017)
  38. Transitions between the steps of forward and reverse splicing of group IIC introns. Smathers CM, Robart AR. RNA 26 664-673 (2020)
  39. Methylation of rRNA as a host defense against rampant group II intron retrotransposition. Waldern JM, Smith D, Piazza CL, Bailey EJ, Schiraldi NJ, Nemati R, Fabris D, Belfort M, Novikova O. Mob DNA 12 9 (2021)
  40. Reverse transcriptases prime DNA synthesis. Zabrady M, Zabrady K, Li AWH, Doherty AJ. Nucleic Acids Res 51 7125-7142 (2023)
  41. A New EBS2b-IBS2b Base Paring (A-8/T-8) Improved the Gene-Targeting Efficiency of Thermotargetron in Escherichia coli. Cui G, Hua D, Zhao X, Zhou J, Yang Y, Huang T, Wang X, Zhao Y, Zhang T, Liao J, Guan Z, Luo P, Chen Z, Qi X, Hong W. Microbiol Spectr e0315922 (2023)
  42. DNA cleavage and reverse splicing of ribonucleoprotein particles reconstituted in vitro with linear RmInt1 RNA. Molina-Sánchez MD, Toro N. RNA Biol 16 930-939 (2019)
  43. Editorial Editorial: Genetically mobile elements repurposed by nature and biotechnologists. Lennon CW, Callahan BP, Cousineau B, Edgell DR, Belfort M. Front Mol Biosci 9 992664 (2022)
  44. Identification of Group II Intron RmInt1 Binding Sites in a Bacterial Genome. Molina-Sánchez MD, García-Rodríguez FM, Andrés-León E, Toro N. Front Mol Biosci 9 834020 (2022)
  45. Structural insights into intron catalysis and dynamics during splicing. Xu L, Liu T, Chung K, Pyle AM. Nature 624 682-688 (2023)
  46. Research Support, N.I.H., Intramural The long and short of it: long noncoding RNAs in neural development and diseases. Zhang J. Front Biosci (Landmark Ed) 26 258-261 (2021)