5gan Citations

Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution.

OpenAccess logo Nature 530 298-302 (2016)
Related entries: 5gam, 5gao, 5gap

Cited: 136 times
EuropePMC logo PMID: 26829225

Abstract

U4/U6.U5 tri-snRNP represents a substantial part of the spliceosome before activation. A cryo-electron microscopy structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at 3.7 Å resolution led to an essentially complete atomic model comprising 30 proteins plus U4/U6 and U5 small nuclear RNAs (snRNAs). The structure reveals striking interweaving interactions of the protein and RNA components, including extended polypeptides penetrating into subunit interfaces. The invariant ACAGAGA sequence of U6 snRNA, which base-pairs with the 5'-splice site during catalytic activation, forms a hairpin stabilized by Dib1 and Prp8 while the adjacent nucleotides interact with the exon binding loop 1 of U5 snRNA. Snu114 harbours GTP, but its putative catalytic histidine is held away from the γ-phosphate by hydrogen bonding to a tyrosine in the amino-terminal domain of Prp8. Mutation of this histidine to alanine has no detectable effect on yeast growth. The structure provides important new insights into the spliceosome activation process leading to the formation of the catalytic centre.

Reviews - 5gan mentioned but not cited (6)

  1. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Fica SM, Nagai K. Nat Struct Mol Biol 24 791-799 (2017)
  2. Functions and regulation of the Brr2 RNA helicase during splicing. Absmeier E, Santos KF, Wahl MC. Cell Cycle 15 3362-3377 (2016)
  3. RNAs in the spliceosome: Insight from cryoEM structures. Zhang L, Vielle A, Espinosa S, Zhao R. Wiley Interdiscip Rev RNA 10 e1523 (2019)
  4. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Gerovac M, Vogel J, Smirnov A. Front Mol Biosci 8 661448 (2021)
  5. Genetics and biochemistry remain essential in the structural era of the spliceosome. Mayerle M, Guthrie C. Methods 125 3-9 (2017)
  6. RNA and Proteins: Mutual Respect. Hall KB. F1000Res 6 345 (2017)

Articles - 5gan mentioned but not cited (14)

  1. Cryo-EM structure of the spliceosome immediately after branching. Galej WP, Wilkinson ME, Fica SM, Oubridge C, Newman AJ, Nagai K. Nature 537 197-201 (2016)
  2. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution. Nguyen THD, Galej WP, Bai XC, Oubridge C, Newman AJ, Scheres SHW, Nagai K. Nature 530 298-302 (2016)
  3. Structure of a pre-catalytic spliceosome. Plaschka C, Lin PC, Nagai K. Nature 546 617-621 (2017)
  4. SCOPe: classification of large macromolecular structures in the structural classification of proteins-extended database. Chandonia JM, Fox NK, Brenner SE. Nucleic Acids Res 47 D475-D481 (2019)
  5. Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Stamos JL, Lentzsch AM, Lambowitz AM. Mol Cell 68 926-939.e4 (2017)
  6. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Kappel K, Liu S, Larsen KP, Skiniotis G, Puglisi EV, Puglisi JD, Zhou ZH, Zhao R, Das R. Nat Methods 15 947-954 (2018)
  7. Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing. Green CM, Li Z, Smith AD, Novikova O, Bacot-Davis VR, Gao F, Hu S, Banavali NK, Thiele DJ, Li H, Belfort M. PLoS Biol 17 e3000104 (2019)
  8. A new role for FBP21 as regulator of Brr2 helicase activity. Henning LM, Santos KF, Sticht J, Jehle S, Lee CT, Wittwer M, Urlaub H, Stelzl U, Wahl MC, Freund C. Nucleic Acids Res 45 7922-7937 (2017)
  9. Identification of a 35S U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP) complex intermediate in spliceosome assembly. Chen Z, Gui B, Zhang Y, Xie G, Li W, Liu S, Xu B, Wu C, He L, Yang J, Yi X, Yang X, Sun L, Liang J, Shang Y. J Biol Chem 292 18113-18128 (2017)
  10. A Highly Proliferative Group IIC Intron from Geobacillus stearothermophilus Reveals New Features of Group II Intron Mobility and Splicing. Mohr G, Kang SY, Park SK, Qin Y, Grohman J, Yao J, Stamos JL, Lambowitz AM. J Mol Biol 430 2760-2783 (2018)
  11. Functional and Biochemical Characterization of Dib1's Role in Pre-Messenger RNA Splicing. Schreib CC, Bowman EK, Hernandez CA, Lucas AL, Potts CHS, Maeder C. J Mol Biol 430 1640-1651 (2018)
  12. Critical assessment of coiled-coil predictions based on protein structure data. Simm D, Hatje K, Waack S, Kollmar M. Sci Rep 11 12439 (2021)
  13. A Snu114-GTP-Prp8 module forms a relay station for efficient splicing in yeast. Jia J, Ganichkin OM, Preußner M, Absmeier E, Alings C, Loll B, Heyd F, Wahl MC. Nucleic Acids Res 48 4572-4584 (2020)
  14. Protein-DNA binding sites prediction based on pre-trained protein language model and contrastive learning. Liu Y, Tian B. Brief Bioinform 25 bbad488 (2023)


Reviews citing this publication (43)

  1. Therapeutic targeting of splicing in cancer. Lee SC, Abdel-Wahab O. Nat Med 22 976-986 (2016)
  2. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Shi Y. Nat Rev Mol Cell Biol 18 655-670 (2017)
  3. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Herzel L, Ottoz DSM, Alpert T, Neugebauer KM. Nat Rev Mol Cell Biol 18 637-650 (2017)
  4. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  5. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  6. Challenges and opportunities in cryo-EM single-particle analysis. Lyumkis D. J Biol Chem 294 5181-5197 (2019)
  7. Structural Insights into Nuclear pre-mRNA Splicing in Higher Eukaryotes. Kastner B, Will CL, Stark H, Lührmann R. Cold Spring Harb Perspect Biol 11 a032417 (2019)
  8. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Yan C, Wan R, Shi Y. Cold Spring Harb Perspect Biol 11 a032409 (2019)
  9. Regulation and Function of RNA Pseudouridylation in Human Cells. Borchardt EK, Martinez NM, Gilbert WV. Annu Rev Genet 54 309-336 (2020)
  10. The life of U6 small nuclear RNA, from cradle to grave. Didychuk AL, Butcher SE, Brow DA. RNA 24 437-460 (2018)
  11. Resolution advances in cryo-EM enable application to drug discovery. Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH. Curr Opin Struct Biol 41 194-202 (2016)
  12. Spliceosomal snRNA Epitranscriptomics. Morais P, Adachi H, Yu YT. Front Genet 12 652129 (2021)
  13. The Spliceosome: A Protein-Directed Metalloribozyme. Shi Y. J Mol Biol 429 2640-2653 (2017)
  14. Structural Basis of Nuclear pre-mRNA Splicing: Lessons from Yeast. Plaschka C, Newman AJ, Nagai K. Cold Spring Harb Perspect Biol 11 a032391 (2019)
  15. Mutations in spliceosome genes and therapeutic opportunities in myeloid malignancies. Taylor J, Lee SC. Genes Chromosomes Cancer 58 889-902 (2019)
  16. High-resolution cryo-EM: the nuts and bolts. Elmlund D, Le SN, Elmlund H. Curr Opin Struct Biol 46 1-6 (2017)
  17. Co-transcriptional splicing and the CTD code. Custódio N, Carmo-Fonseca M. Crit Rev Biochem Mol Biol 51 395-411 (2016)
  18. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. Schlundt A, Tants JN, Sattler M. Methods 118-119 119-136 (2017)
  19. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. Peck SA, Hughes KD, Victorino JF, Mosley AL. Wiley Interdiscip Rev RNA 10 e1529 (2019)
  20. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. Cruz-Reyes J, Mooers BHM, Doharey PK, Meehan J, Gulati S. Wiley Interdiscip Rev RNA 9 e1502 (2018)
  21. The nuts and bolts of the endogenous spliceosome. Sperling R. Wiley Interdiscip Rev RNA 8 (2017)
  22. Structural and Functional Insights into Human Nuclear Cyclophilins. Rajiv C, Davis TL. Biomolecules 8 E161 (2018)
  23. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Serna M. Front Mol Biosci 6 33 (2019)
  24. Computational methods for analyzing conformational variability of macromolecular complexes from cryo-electron microscopy images. Jonić S. Curr Opin Struct Biol 43 114-121 (2017)
  25. The Role of the U5 snRNP in Genetic Disorders and Cancer. Wood KA, Eadsforth MA, Newman WG, O'Keefe RT. Front Genet 12 636620 (2021)
  26. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Wilkinson ME, Lin PC, Plaschka C, Nagai K. Annu Rev Biophys 47 175-199 (2018)
  27. Cryo-electron Microscopy Analysis of Structurally Heterogeneous Macromolecular Complexes. Jonić S. Comput Struct Biotechnol J 14 385-390 (2016)
  28. While the revolution will not be crystallized, biochemistry reigns supreme. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. Protein Sci 26 69-81 (2017)
  29. Structural Study of Heterogeneous Biological Samples by Cryoelectron Microscopy and Image Processing. White HE, Ignatiou A, Clare DK, Orlova EV. Biomed Res Int 2017 1032432 (2017)
  30. Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET. van der Feltz C, Hoskins AA. Methods 125 45-54 (2017)
  31. Structural studies of the endogenous spliceosome - The supraspliceosome. Sperling J, Sperling R. Methods 125 70-83 (2017)
  32. Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model. Kim DN, Sanbonmatsu KY. Biosci Rep 37 BSR20170072 (2017)
  33. On the state of crystallography at the dawn of the electron microscopy revolution. Higgins MK, Lea SM. Curr Opin Struct Biol 46 95-101 (2017)
  34. UBL5/Hub1: An Atypical Ubiquitin-Like Protein with a Typical Role as a Stress-Responsive Regulator. Chanarat S. Int J Mol Sci 22 9384 (2021)
  35. Advances in cryoEM and its impact on β-pore forming proteins. Boyd CM, Bubeck D. Curr Opin Struct Biol 52 41-49 (2018)
  36. Cooperative Analysis of Structural Dynamics in RNA-Protein Complexes by Single-Molecule Förster Resonance Energy Transfer Spectroscopy. Meiser N, Fuks C, Hengesbach M. Molecules 25 E2057 (2020)
  37. Lights, camera, action! Capturing the spliceosome and pre-mRNA splicing with single-molecule fluorescence microscopy. DeHaven AC, Norden IS, Hoskins AA. Wiley Interdiscip Rev RNA 7 683-701 (2016)
  38. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. RNA 29 531-550 (2023)
  39. Structural dynamics of the N-terminal domain and the Switch loop of Prp8 during spliceosome assembly and activation. Jia X, Sun C. Nucleic Acids Res 46 3833-3840 (2018)
  40. Versatility of Approximating Single-Particle Electron Microscopy Density Maps Using Pseudoatoms and Approximation-Accuracy Control. Jonić S, Sorzano CO. Biomed Res Int 2016 7060348 (2016)
  41. Regulation of Pre-mRNA Splicing: Indispensable Role of Post-Translational Modifications of Splicing Factors. Kretova M, Selicky T, Cipakova I, Cipak L. Life (Basel) 13 604 (2023)
  42. Biological cryo-electron microscopy in China. Wang HW, Lei J, Shi Y. Protein Sci 26 16-31 (2017)
  43. The regulation of antiviral innate immunity through non-m6A RNA modifications. Shen S, Zhang LS. Front Immunol 14 1286820 (2023)

Articles citing this publication (73)

  1. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Kimanius D, Forsberg BO, Scheres SH, Lindahl E. Elife 5 e18722 (2016)
  2. Structure of a yeast activated spliceosome at 3.5 Å resolution. Yan C, Wan R, Bai R, Huang G, Shi Y. Science 353 904-911 (2016)
  3. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C, Yildiz A, Carter AP. Nature 554 202-206 (2018)
  4. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Lührmann R. Nature 542 318-323 (2017)
  5. Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Bertram K, Agafonov DE, Dybkov O, Haselbach D, Leelaram MN, Will CL, Urlaub H, Kastner B, Lührmann R, Stark H. Cell 170 701-713.e11 (2017)
  6. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Wan R, Yan C, Bai R, Huang G, Shi Y. Science 353 895-904 (2016)
  7. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Rauhut R, Fabrizio P, Dybkov O, Hartmuth K, Pena V, Chari A, Kumar V, Lee CT, Urlaub H, Kastner B, Stark H, Lührmann R. Science 353 1399-1405 (2016)
  8. Structure of a spliceosome remodelled for exon ligation. Fica SM, Oubridge C, Galej WP, Wilkinson ME, Bai XC, Newman AJ, Nagai K. Nature 542 377-380 (2017)
  9. Mechanism of 5' splice site transfer for human spliceosome activation. Charenton C, Wilkinson ME, Nagai K. Science 364 362-367 (2019)
  10. Prespliceosome structure provides insights into spliceosome assembly and regulation. Plaschka C, Lin PC, Charenton C, Nagai K. Nature 559 419-422 (2018)
  11. Structural Mechanism of EMRE-Dependent Gating of the Human Mitochondrial Calcium Uniporter. Wang Y, Nguyen NX, She J, Zeng W, Yang Y, Bai XC, Jiang Y. Cell 177 1252-1261.e13 (2019)
  12. The complete structure of the human TFIIH core complex. Greber BJ, Toso DB, Fang J, Nogales E. Elife 8 e44771 (2019)
  13. Structure of the yeast spliceosomal postcatalytic P complex. Liu S, Li X, Zhang L, Jiang J, Hill RC, Cui Y, Hansen KC, Zhou ZH, Zhao R. Science 358 1278-1283 (2017)
  14. Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Zhan X, Zhan X, Yan C, Zhang X, Lei J, Shi Y. Cell Res 28 1129-1140 (2018)
  15. The cryo-electron microscopy structure of human transcription factor IIH. Greber BJ, Nguyen THD, Fang J, Afonine PV, Adams PD, Nogales E. Nature 549 414-417 (2017)
  16. High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy. Short JM, Liu Y, Chen S, Soni N, Madhusudhan MS, Shivji MK, Venkitaraman AR. Nucleic Acids Res 44 9017-9030 (2016)
  17. Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu. Ho CM, Li X, Lai M, Terwilliger TC, Beck JR, Wohlschlegel J, Goldberg DE, Fitzpatrick AWP, Zhou ZH. Nat Methods 17 79-85 (2020)
  18. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Roh SH, Hryc CF, Jeong HH, Fei X, Jakana J, Lorimer GH, Chiu W. Proc Natl Acad Sci U S A 114 8259-8264 (2017)
  19. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Menny A, Serna M, Boyd CM, Gardner S, Joseph AP, Morgan BP, Topf M, Brooks NJ, Bubeck D. Nat Commun 9 5316 (2018)
  20. Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation. Bai R, Wan R, Yan C, Lei J, Shi Y. Science 360 1423-1429 (2018)
  21. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Zhang K, Keane SC, Su Z, Irobalieva RN, Chen M, Van V, Sciandra CA, Marchant J, Heng X, Schmid MF, Case DA, Ludtke SJ, Summers MF, Chiu W. Structure 26 490-498.e3 (2018)
  22. Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands. Li J, Shang G, Chen YJ, Brautigam CA, Liou J, Zhang X, Bai XC. Elife 8 e47650 (2019)
  23. 3DFlex: determining structure and motion of flexible proteins from cryo-EM. Punjani A, Fleet DJ. Nat Methods 20 860-870 (2023)
  24. All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome. Casalino L, Palermo G, Spinello A, Rothlisberger U, Magistrato A. Proc Natl Acad Sci U S A 115 6584-6589 (2018)
  25. Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation. Sidarovich A, Will CL, Anokhina MM, Ceballos J, Sievers S, Agafonov DE, Samatov T, Bao P, Kastner B, Urlaub H, Waldmann H, Lührmann R. Elife 6 e23533 (2017)
  26. Cryo EM structure of intact rotary H+-ATPase/synthase from Thermus thermophilus. Nakanishi A, Kishikawa JI, Tamakoshi M, Mitsuoka K, Yokoyama K. Nat Commun 9 89 (2018)
  27. Splicing factors Sf3A2 and Prp31 have direct roles in mitotic chromosome segregation. Pellacani C, Bucciarelli E, Renda F, Hayward D, Palena A, Chen J, Bonaccorsi S, Wakefield JG, Gatti M, Somma MP. Elife 7 e40325 (2018)
  28. Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes. Vindry C, Marnef A, Broomhead H, Twyffels L, Ozgur S, Stoecklin G, Llorian M, Smith CW, Mata J, Weil D, Standart N. Cell Rep 20 1187-1200 (2017)
  29. Substrate-assisted mechanism of RNP disruption by the spliceosomal Brr2 RNA helicase. Theuser M, Höbartner C, Wahl MC, Santos KF. Proc Natl Acad Sci U S A 113 7798-7803 (2016)
  30. Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities. Didychuk AL, Montemayor EJ, Carrocci TJ, DeLaitsch AT, Lucarelli SE, Westler WM, Brow DA, Hoskins AA, Butcher SE. Nat Commun 8 497 (2017)
  31. Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2. Absmeier E, Becke C, Wollenhaupt J, Santos KF, Wahl MC. Cell Cycle 16 100-112 (2017)
  32. Small molecule-RNA targeting: starting with the fundamentals. Hargrove AE. Chem Commun (Camb) 56 14744-14756 (2020)
  33. Structural toggle in the RNaseH domain of Prp8 helps balance splicing fidelity and catalytic efficiency. Mayerle M, Raghavan M, Ledoux S, Price A, Stepankiw N, Hadjivassiliou H, Moehle EA, Mendoza SD, Pleiss JA, Guthrie C, Abelson J. Proc Natl Acad Sci U S A 114 4739-4744 (2017)
  34. The CryoEM structure of the Saccharomyces cerevisiae ribosome maturation factor Rea1. Sosnowski P, Urnavicius L, Boland A, Fagiewicz R, Busselez J, Papai G, Schmidt H. Elife 7 e39163 (2018)
  35. What Could Go Wrong? A Practical Guide to Single-Particle Cryo-EM: From Biochemistry to Atomic Models. Cianfrocco MA, Kellogg EH. J Chem Inf Model 60 2458-2469 (2020)
  36. Hybrid Electron Microscopy Normal Mode Analysis with Scipion. Harastani M, Sorzano COS, Jonić S. Protein Sci 29 223-236 (2020)
  37. Unraveling self-assembly pathways of the 468-kDa proteolytic machine TET2. Macek P, Kerfah R, Boeri Erba E, Crublet E, Moriscot C, Schoehn G, Amero C, Boisbouvier J. Sci Adv 3 e1601601 (2017)
  38. Conserved protein Pir2ARS2 mediates gene repression through cryptic introns in lncRNAs. Thillainadesan G, Xiao H, Holla S, Dhakshnamoorthy J, Jenkins LMM, Wheeler D, Grewal SIS. Nat Commun 11 2412 (2020)
  39. Disease modeling of core pre-mRNA splicing factor haploinsufficiency. Wood KA, Rowlands CF, Qureshi WMS, Thomas HB, Buczek WA, Briggs TA, Hubbard SJ, Hentges KE, Newman WG, O'Keefe RT. Hum Mol Genet 28 3704-3723 (2019)
  40. Enantioselective Synthesis of Thailanstatin A Methyl Ester and Evaluation of in Vitro Splicing Inhibition. Ghosh AK, Veitschegger AM, Nie S, Relitti N, MacRae AJ, Jurica MS. J Org Chem 83 5187-5198 (2018)
  41. SmartBac, a new baculovirus system for large protein complex production. Zhai Y, Zhang D, Yu L, Sun F, Sun F. J Struct Biol X 1 100003 (2019)
  42. The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. Roithová A, Klimešová K, Pánek J, Will CL, Lührmann R, Stanek D, Girard C. Nucleic Acids Res 46 3774-3790 (2018)
  43. A multi-step model for facilitated unwinding of the yeast U4/U6 RNA duplex. Rodgers ML, Didychuk AL, Butcher SE, Brow DA, Hoskins AA. Nucleic Acids Res 44 10912-10928 (2016)
  44. Modelling the developmental spliceosomal craniofacial disorder Burn-McKeown syndrome using induced pluripotent stem cells. Wood KA, Rowlands CF, Thomas HB, Woods S, O'Flaherty J, Douzgou S, Kimber SJ, Newman WG, O'Keefe RT. PLoS One 15 e0233582 (2020)
  45. Intrinsically Disordered Protein Ntr2 Modulates the Spliceosomal RNA Helicase Brr2. Wollenhaupt J, Henning LM, Sticht J, Becke C, Freund C, Santos KF, Wahl MC. Biophys J 114 788-799 (2018)
  46. Prp8 impacts cryptic but not alternative splicing frequency. Mayerle M, Yitiz S, Soulette C, Rogel LE, Ramirez A, Ragle JM, Katzman S, Guthrie C, Zahler AM. Proc Natl Acad Sci U S A 116 2193-2199 (2019)
  47. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity. Ledoux S, Guthrie C. J Biol Chem 291 11954-11965 (2016)
  48. The inactive C-terminal cassette of the dual-cassette RNA helicase BRR2 both stimulates and inhibits the activity of the N-terminal helicase unit. Vester K, Santos KF, Kuropka B, Weise C, Wahl MC. J Biol Chem 295 2097-2112 (2020)
  49. A multi-factor trafficking site on the spliceosome remodeling enzyme BRR2 recruits C9ORF78 to regulate alternative splicing. Bergfort A, Preußner M, Kuropka B, Ilik İA, Hilal T, Weber G, Freund C, Aktaş T, Heyd F, Wahl MC. Nat Commun 13 1132 (2022)
  50. STRUCTURE. A Big Bang in spliceosome structural biology. Cate JH. Science 351 1390-1392 (2016)
  51. The tri-snRNP specific protein FgSnu66 is functionally related to FgPrp4 kinase in Fusarium graminearum. Sun M, Zhang Y, Wang Q, Wu C, Jiang C, Xu JR. Mol Microbiol 109 494-508 (2018)
  52. DEAH-RHA helicase•Znf cofactor systems in kinetoplastid RNA editing and evolutionarily distant RNA processes. Cruz-Reyes J, Mooers BH, Abu-Adas Z, Kumar V, Gulati S. RNA Dis 3 e1336 (2016)
  53. A protein map of the yeast activated spliceosome as obtained by electron microscopy. Sun C, Rigo N, Fabrizio P, Kastner B, Lührmann R. RNA 22 1427-1440 (2016)
  54. Ab-initio contrast estimation and denoising of cryo-EM images. Shi Y, Singer A. Comput Methods Programs Biomed 224 107018 (2022)
  55. An Allosteric Network for Spliceosome Activation Revealed by High-Throughput Suppressor Analysis in Saccharomyces cerevisiae. Brow DA. Genetics 212 111-124 (2019)
  56. Defining essential elements and genetic interactions of the yeast Lsm2-8 ring and demonstration that essentiality of Lsm2-8 is bypassed via overexpression of U6 snRNA or the U6 snRNP subunit Prp24. Roth AJ, Shuman S, Schwer B. RNA 24 853-864 (2018)
  57. Identification of a novel gene required for competitive growth at high temperature in the thermotolerant yeast Kluyveromyces marxianus. Montini N, Doughty TW, Domenzain I, Fenton DA, Baranov PV, Harrington R, Nielsen J, Siewers V, Morrissey JP. Microbiology (Reading) 168 (2022)
  58. VfoldMCPX: predicting multistrand RNA complexes. Zhang S, Cheng Y, Guo P, Chen SJ. RNA 28 596-608 (2022)
  59. EMPAS: Electron Microscopy Screening for Endogenous Protein Architectures. Kim G, Jang S, Lee E, Song JJ. Mol Cells 43 804-812 (2020)
  60. Globular domain structure and function of restriction-like-endonuclease LINEs: similarities to eukaryotic splicing factor Prp8. Mahbub MM, Chowdhury SM, Christensen SM. Mob DNA 8 16 (2017)
  61. Identification of transient intermediates during spliceosome activation by single molecule fluorescence microscopy. Fu X, Kaur H, Rodgers ML, Montemayor EJ, Butcher SE, Hoskins AA. Proc Natl Acad Sci U S A 119 e2206815119 (2022)
  62. Long-range allostery mediates cooperative adenine nucleotide binding by the Ski2-like RNA helicase Brr2. Absmeier E, Vester K, Ghane T, Burakovskiy D, Milon P, Imhof P, Rodnina MV, Santos KF, Wahl MC. J Biol Chem 297 100829 (2021)
  63. MDF is a conserved splicing factor and modulates cell division and stress response in Arabidopsis. de Luxán-Hernández C, Lohmann J, Tranque E, Chumova J, Binarova P, Salinas J, Weingartner M. Life Sci Alliance 6 e202201507 (2023)
  64. Radical probing of spliceosome assembly. Grewal CS, Kent OA, MacMillan AM. Methods 125 16-24 (2017)
  65. Structural and mechanistic insights into human splicing factor SF3b complex derived using an integrated approach guided by the cryo-EM density maps. Rakesh R, Joseph AP, Bhaskara RM, Srinivasan N. RNA Biol 13 1025-1040 (2016)
  66. Cryo- EM structure of the mycobacterial 70S ribosome in complex with ribosome hibernation promotion factor RafH. Kumar N, Sharma S, Kaushal PS. Nat Commun 15 638 (2024)
  67. Nucleic acid-protein interfaces studied by MAS solid-state NMR spectroscopy. Aguion PI, Marchanka A, Carlomagno T. J Struct Biol X 6 100072 (2022)
  68. Closing in on ATPase Activity by an RNA Helicase. Johnson SJ, Yim MK. Structure 28 143-144 (2020)
  69. Isolation of mutant alleles of the U6 snRNA m 6 A methyltransferase Mtl16 and characterization of their genetic interactions with splicing mutants in Schizosaccharomyces pombe. Willet AH, Ren L, Turner LA, Gould KL. MicroPubl Biol 2023 (2023)
  70. Mutagenesis of Snu114 domain IV identifies a developmental role in meiotic splicing. Gautam A, Beggs JD. RNA Biol 16 185-195 (2019)
  71. Sample Preparation for Electron Cryo-Microscopy of Macromolecular Machines. Deniaud A, Kabasakal BV, Bufton JC, Schaffitzel C. Adv Exp Med Biol 3234 173-190 (2024)
  72. Signal enhancement for two-dimensional cryo-EM data processing. Sharon G, Shkolnisky Y, Bendory T. Biol Imaging 3 e7 (2023)
  73. Structural biology: Catalytic spliceosome captured. Kosmyna B, Query CC. Nature 537 175-176 (2016)


Related citations provided by authors (1)

  1. The architecture of the spliceosomal U4/U6.U5 tri-snRNP.. Nguyen TH, Galej WP, Bai XC, Savva CG, Newman AJ, Scheres SH, Nagai K Nature 523 47-52 (2015)