5gl1 Citations

The Central domain of RyR1 is the transducer for long-range allosteric gating of channel opening.

OpenAccess logo Cell Res 26 995-1006 (2016)
Related entries: 5gky, 5gkz, 5gl0

Cited: 52 times
EuropePMC logo PMID: 27468892

Abstract

The ryanodine receptors (RyRs) are intracellular calcium channels responsible for rapid release of Ca(2+) from the sarcoplasmic/endoplasmic reticulum (SR/ER) to the cytoplasm, which is essential for the excitation-contraction (E-C) coupling of cardiac and skeletal muscles. The near-atomic resolution structure of closed RyR1 revealed the molecular details of this colossal channel, while the long-range allosteric gating mechanism awaits elucidation. Here, we report the cryo-EM structures of rabbit RyR1 in three closed conformations at about 4 Å resolution and an open state at 5.7 Å. Comparison of the closed RyR1 structures shows a breathing motion of the cytoplasmic platform, while the channel domain and its contiguous Central domain remain nearly unchanged. Comparison of the open and closed structures shows a dilation of the S6 tetrahelical bundle at the cytoplasmic gate that leads to channel opening. During the pore opening, the cytoplasmic "O-ring" motif of the channel domain and the U-motif of the Central domain exhibit coupled motion, while the Central domain undergoes domain-wise displacement. These structural analyses provide important insight into the E-C coupling in skeletal muscles and identify the Central domain as the transducer that couples the conformational changes of the cytoplasmic platform to the gating of the central pore.

Reviews - 5gl1 mentioned but not cited (1)

  1. Regulatory mechanisms of ryanodine receptor/Ca2+ release channel revealed by recent advancements in structural studies. Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. J Muscle Res Cell Motil 42 291-304 (2021)

Articles - 5gl1 mentioned but not cited (2)

  1. The Central domain of RyR1 is the transducer for long-range allosteric gating of channel opening. Bai XC, Yan Z, Wu J, Li Z, Yan N. Cell Res 26 995-1006 (2016)
  2. 'Dusty core disease' (DuCD): expanding morphological spectrum of RYR1 recessive myopathies. Garibaldi M, Rendu J, Brocard J, Lacene E, Fauré J, Brochier G, Beuvin M, Labasse C, Madelaine A, Malfatti E, Bevilacqua JA, Lubieniecki F, Monges S, Taratuto AL, Laporte J, Marty I, Antonini G, Romero NB. Acta Neuropathol Commun 7 3 (2019)


Reviews citing this publication (13)

  1. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Bagur R, Hajnóczky G. Mol Cell 66 780-788 (2017)
  2. The structural basis of ryanodine receptor ion channel function. Meissner G. J Gen Physiol 149 1065-1089 (2017)
  3. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Dridi H, Kushnir A, Zalk R, Yuan Q, Melville Z, Marks AR. Nat Rev Cardiol 17 732-747 (2020)
  4. Mechanisms and physiological implications of cooperative gating of clustered ion channels. Dixon RE, Navedo MF, Binder MD, Santana LF. Physiol Rev 102 1159-1210 (2022)
  5. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Samsó M. Protein Sci 26 52-68 (2017)
  6. Structure of IP3R channel: high-resolution insights from cryo-EM. Baker MR, Fan G, Serysheva II. Curr Opin Struct Biol 46 38-47 (2017)
  7. Ca2+ Release Channels Join the 'Resolution Revolution'. Zalk R, Marks AR. Trends Biochem Sci 42 543-555 (2017)
  8. The role of junctophilin proteins in cellular function. Lehnart SE, Wehrens XHT. Physiol Rev 102 1211-1261 (2022)
  9. Core skeletal muscle ryanodine receptor calcium release complex. Dulhunty AF, Wei-LaPierre L, Casarotto MG, Beard NA. Clin Exp Pharmacol Physiol 44 3-12 (2017)
  10. Ryanodine receptor and immune-related molecules in diabetic cardiomyopathy. Tian CJ, Zhang JH, Liu J, Ma Z, Zhen Z. ESC Heart Fail 8 2637-2646 (2021)
  11. Recent advances in understanding the ryanodine receptor calcium release channels and their role in calcium signalling. Dulhunty AF, Beard NA, Casarotto MG. F1000Res 7 F1000 Faculty Rev-1851 (2018)
  12. Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives. Bauerová-Hlinková V, Hajdúchová D, Bauer JA. Molecules 25 E4040 (2020)
  13. Structural Insight Into Ryanodine Receptor Channelopathies. Hadiatullah H, He Z, Yuchi Z. Front Pharmacol 13 897494 (2022)

Articles citing this publication (36)

  1. Structural mechanism of two gain-of-function cardiac and skeletal RyR mutations at an equivalent site by cryo-EM. Iyer KA, Hu Y, Nayak AR, Kurebayashi N, Murayama T, Samsó M. Sci Adv 6 eabb2964 (2020)
  2. Cryo-EM reveals ligand induced allostery underlying InsP3R channel gating. Fan G, Baker MR, Wang Z, Seryshev AB, Ludtke SJ, Baker ML, Serysheva II. Cell Res 28 1158-1170 (2018)
  3. A tryptophan residue in the caffeine-binding site of the ryanodine receptor regulates Ca2+ sensitivity. Murayama T, Ogawa H, Kurebayashi N, Ohno S, Horie M, Sakurai T. Commun Biol 1 98 (2018)
  4. Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. Chi X, Gong D, Ren K, Zhou G, Huang G, Lei J, Zhou Q, Yan N. Proc Natl Acad Sci U S A 116 25575-25582 (2019)
  5. Pathological conformations of disease mutant Ryanodine Receptors revealed by cryo-EM. Woll KA, Haji-Ghassemi O, Van Petegem F. Nat Commun 12 807 (2021)
  6. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, Chrismer IC, Zhang X, Cosgrove MM, Kuo A, Vasavada R, Jain MS, Waite M, Rajapakse D, Witherspoon JW, Wistow G, Meilleur KG. J Neurol 265 2506-2524 (2018)
  7. Ca2+-mediated activation of the skeletal-muscle ryanodine receptor ion channel. Xu L, Chirasani VR, Carter JS, Pasek DA, Dokholyan NV, Yamaguchi N, Meissner G. J Biol Chem 293 19501-19509 (2018)
  8. Structure of RyR1 in native membranes. Chen W, Kudryashev M. EMBO Rep 21 e49891 (2020)
  9. Calcium Channelopathies: Structural Insights into Disorders of the Muscle Excitation-Contraction Complex. Pancaroglu R, Van Petegem F. Annu Rev Genet 52 373-396 (2018)
  10. Ca2+-dependent calmodulin binding to cardiac ryanodine receptor (RyR2) calmodulin-binding domains. Brohus M, Søndergaard MT, Wayne Chen SR, van Petegem F, Overgaard MT. Biochem J 476 193-209 (2019)
  11. Enhanced Cytosolic Ca2+ Activation Underlies a Common Defect of Central Domain Cardiac Ryanodine Receptor Mutations Linked to Arrhythmias. Xiao Z, Guo W, Sun B, Hunt DJ, Wei J, Liu Y, Wang Y, Wang R, Jones PP, Back TG, Chen SRW. J Biol Chem 291 24528-24537 (2016)
  12. Structural and functional interactions between the Ca2+-, ATP-, and caffeine-binding sites of skeletal muscle ryanodine receptor (RyR1). Chirasani VR, Pasek DA, Meissner G. J Biol Chem 297 101040 (2021)
  13. The FKBP12 subunit modifies the long-range allosterism of the ryanodine receptor. Steele TWE, Samsó M. J Struct Biol 205 180-188 (2019)
  14. CPVT-associated cardiac ryanodine receptor mutation G357S with reduced penetrance impairs Ca2+ release termination and diminishes protein expression. Liu Y, Wei J, Wong King Yuen SM, Sun B, Tang Y, Wang R, Van Petegem F, Chen SRW. PLoS One 12 e0184177 (2017)
  15. Structural basis for conductance through TRIC cation channels. Su M, Gao F, Yuan Q, Mao Y, Li DL, Guo Y, Yang C, Wang XH, Bruni R, Kloss B, Zhao H, Zeng Y, Zhang FB, Marks AR, Hendrickson WA, Chen YH. Nat Commun 8 15103 (2017)
  16. The central domain of cardiac ryanodine receptor governs channel activation, regulation, and stability. Guo W, Sun B, Estillore JP, Wang R, Chen SRW. J Biol Chem 295 15622-15635 (2020)
  17. High-resolution structure of the membrane-embedded skeletal muscle ryanodine receptor. Melville Z, Kim K, Clarke OB, Marks AR. Structure 30 172-180.e3 (2022)
  18. Investigating the inter-subunit/subdomain interactions and motions relevant to disease mutations in the N-terminal domain of ryanodine receptors by molecular dynamics simulation. Zheng W, Liu Z. Proteins 85 1633-1644 (2017)
  19. Resolved Structural States of Calmodulin in Regulation of Skeletal Muscle Calcium Release. McCarthy MR, Savich Y, Cornea RL, Thomas DD. Biophys J 118 1090-1100 (2020)
  20. Ca2+ inactivation of the mammalian ryanodine receptor type 1 in a lipidic environment revealed by cryo-EM. Nayak AR, Samsó M. Elife 11 e75568 (2022)
  21. How to open a Ryanodine Receptor. Van Petegem F. Cell Res 26 1073-1074 (2016)
  22. Insights into channel modulation mechanism of RYR1 mutants using Ca2+ imaging and molecular dynamics. Yamazawa T, Ogawa H, Murayama T, Yamaguchi M, Oyamada H, Suzuki J, Kurebayashi N, Kanemaru K, Oguchi K, Sakurai T, Iino M. J Gen Physiol 152 e201812235 (2020)
  23. The Cytoplasmic Region of Inner Helix S6 Is an Important Determinant of Cardiac Ryanodine Receptor Channel Gating. Sun B, Guo W, Tian X, Yao J, Zhang L, Wang R, Chen SR. J Biol Chem 291 26024-26034 (2016)
  24. Architecture of the human NALCN channelosome. Zhou L, Liu H, Zhao Q, Wu J, Yan Z. Cell Discov 8 33 (2022)
  25. Molecular basis for gating of cardiac ryanodine receptor explains the mechanisms for gain- and loss-of function mutations. Kobayashi T, Tsutsumi A, Kurebayashi N, Saito K, Kodama M, Sakurai T, Kikkawa M, Murayama T, Ogawa H. Nat Commun 13 2821 (2022)
  26. Molecular mechanism of the severe MH/CCD mutation Y522S in skeletal ryanodine receptor (RyR1) by cryo-EM. Iyer KA, Hu Y, Klose T, Murayama T, Samsó M. Proc Natl Acad Sci U S A 119 e2122140119 (2022)
  27. Ligand binding to Ryanodine Receptors revealed through cryo-electron microscopy. Van Petegem F. Cell Calcium 61 50-52 (2017)
  28. Molecular Dynamics Simulations of the Cardiac Ryanodine Receptor Type 2 (RyR2) Gating Mechanism. Greene D, Barton M, Luchko T, Shiferaw Y. J Phys Chem B 126 9790-9809 (2022)
  29. Ryanodine receptor resolution revolution: Implications for InsP3 receptors? Mak DD, Foskett JK. Cell Calcium 61 53-56 (2017)
  30. A recurrent RYR1 mutation associated with early-onset hypotonia and benign disease course. Biancalana V, Rendu J, Chaussenot A, Mecili H, Bieth E, Fradin M, Mercier S, Michaud M, Nougues MC, Pasquier L, Sacconi S, Romero NB, Marcorelles P, Authier FJ, Gelot Bernabe A, Uro-Coste E, Cances C, Isidor B, Magot A, Minot-Myhie MC, Péréon Y, Perrier-Boeswillwald J, Bretaudeau G, Dondaine N, Bouzenard A, Pizzimenti M, Eymard B, Ferreiro A, Laporte J, Fauré J, Böhm J. Acta Neuropathol Commun 9 155 (2021)
  31. Identification of Potential Human Ryanodine Receptor 1 Agonists and Molecular Mechanisms of Natural Small-Molecule Phenols as Anxiolytics. Chen Y, Wang X, Zhai H, Zhang Y, Huang J. ACS Omega 6 29940-29954 (2021)
  32. Mapping co-regulatory interactions among ligand-binding sites in ryanodine receptor 1. Chirasani VR, Popov KI, Meissner G, Dokholyan NV. Proteins 90 385-394 (2022)
  33. Eu3+ detects two functionally distinct luminal Ca2+ binding sites in ryanodine receptors. Magyar ZÉ, Bauer J, Bauerová-Hlinková V, Jóna I, Gaburjakova J, Gaburjakova M, Almássy J. Biophys J 122 3516-3531 (2023)
  34. Pharmacovariome scanning using whole pharmacogene resequencing coupled with deep computational analysis and machine learning for clinical pharmacogenomics. Tafazoli A, Mikros J, Khaghani F, Alimardani M, Rafigh M, Hemmati M, Siamoglou S, Golińska AK, Kamiński KA, Niemira M, Miltyk W, Patrinos GP. Hum Genomics 17 62 (2023)
  35. Prenatal diagnosis identifies compound heterozygous variants in RYR1 that causes ultrasound abnormalities in a fetus. Zhao Q, Li X, Liu L, Zhang X, Pan X, Yao H, Ma Y, Tan B. BMC Med Genomics 15 202 (2022)
  36. Roles and Sources of Calcium in Synaptic Exocytosis. Wang ZW, Riaz S, Niu L. Adv Neurobiol 33 139-170 (2023)