5hvd Citations

The complete structure of an activated open sodium channel.

OpenAccess logo Nat Commun 8 14205 (2017)
Related entries: 3zjz, 5hvx

Cited: 73 times
EuropePMC logo PMID: 28205548

Abstract

Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4-S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate.

Articles - 5hvd mentioned but not cited (7)

  1. Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36. Chen MC, Tippana R, Demeshkina NA, Murat P, Balasubramanian S, Myong S, Ferré-D'Amaré AR. Nature 558 465-469 (2018)
  2. The complete structure of an activated open sodium channel. Sula A, Booker J, Ng LC, Naylor CE, DeCaen PG, Wallace BA. Nat Commun 8 14205 (2017)
  3. Valproic acid interactions with the NavMs voltage-gated sodium channel. Zanatta G, Sula A, Miles AJ, Ng LCT, Torella R, Pryde DC, DeCaen PG, Wallace BA. Proc Natl Acad Sci U S A 116 26549-26554 (2019)
  4. An open state of a voltage-gated sodium channel involving a π-helix and conserved pore-facing asparagine. Choudhury K, Kasimova MA, McComas S, Howard RJ, Delemotte L. Biophys J 121 11-22 (2022)
  5. Distinct modulation of inactivation by a residue in the pore domain of voltage-gated Na+ channels: mechanistic insights from recent crystal structures. Cervenka R, Lukacs P, Gawali VS, Ke S, Koenig X, Rubi L, Zarrabi T, Hilber K, Sandtner W, Stary-Weinzinger A, Todt H. Sci Rep 8 631 (2018)
  6. Progress in understanding slow inactivation speeds up. Payandeh J. J Gen Physiol 150 1235-1238 (2018)
  7. A novel membrane targeting domain mediates the endosomal or Golgi localization specificity of small GTPases Rab22 and Rab31. Banworth MJ, Liang Z, Li G. J Biol Chem 298 102281 (2022)


Reviews citing this publication (20)

  1. Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform NaV1.7. Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Du Bois J, Hunter JC. J Med Chem 62 8695-8710 (2019)
  2. New Structures and Gating of Voltage-Dependent Potassium (Kv) Channels and Their Relatives: A Multi-Domain and Dynamic Question. Barros F, Pardo LA, Domínguez P, Sierra LM, de la Peña P. Int J Mol Sci 20 E248 (2019)
  3. Voltage gated sodium channels as therapeutic targets for chronic pain. Ma RSY, Kayani K, Whyte-Oshodi D, Whyte-Oshodi A, Nachiappan N, Gnanarajah S, Mohammed R. J Pain Res 12 2709-2722 (2019)
  4. Challenges and advances in atomistic simulations of potassium and sodium ion channel gating and permeation. DeMarco KR, Bekker S, Vorobyov I. J Physiol 597 679-698 (2019)
  5. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science. Petti MK, Lomont JP, Maj M, Zanni MT. J Phys Chem B 122 1771-1780 (2018)
  6. Long QT Syndrome Type 2: Emerging Strategies for Correcting Class 2 KCNH2 (hERG) Mutations and Identifying New Patients. Ono M, Burgess DE, Schroder EA, Elayi CS, Anderson CL, January CT, Sun B, Immadisetty K, Kekenes-Huskey PM, Delisle BP. Biomolecules 10 E1144 (2020)
  7. Pharmacological and nutritional targeting of voltage-gated sodium channels in the treatment of cancers. Lopez-Charcas O, Pukkanasut P, Velu SE, Brackenbury WJ, Hales TG, Besson P, Gomora JC, Roger S. iScience 24 102270 (2021)
  8. Structure and function of polycystin channels in primary cilia. Ta CM, Vien TN, Ng LCT, DeCaen PG. Cell Signal 72 109626 (2020)
  9. Interpreting the functional role of a novel interaction motif in prokaryotic sodium channels. Sula A, Wallace BA. J Gen Physiol 149 613-622 (2017)
  10. Roles for Countercharge in the Voltage Sensor Domain of Ion Channels. Groome JR, Bayless-Edwards L. Front Pharmacol 11 160 (2020)
  11. Druggability of Voltage-Gated Sodium Channels-Exploring Old and New Drug Receptor Sites. Wisedchaisri G, Gamal El-Din TM. Front Pharmacol 13 858348 (2022)
  12. Structural Advances in Voltage-Gated Sodium Channels. Jiang D, Zhang J, Xia Z. Front Pharmacol 13 908867 (2022)
  13. Divergent effects of anesthetics on lipid bilayer properties and sodium channel function. Herold KF, Andersen OS, Hemmings HC. Eur Biophys J 46 617-626 (2017)
  14. Comparison of permeation mechanisms in sodium-selective ion channels. Boiteux C, Flood E, Allen TW. Neurosci Lett 700 3-8 (2019)
  15. Modelling the interactions between animal venom peptides and membrane proteins. Hung A, Kuyucak S, Schroeder CI, Kaas Q. Neuropharmacology 127 20-31 (2017)
  16. Ion channel engineering for modulation and de novo generation of electrical excitability. Nguyen HX, Bursac N. Curr Opin Biotechnol 58 100-107 (2019)
  17. Voltage-gated sodium channels in diabetic sensory neuropathy: Function, modulation, and therapeutic potential. Bigsby S, Neapetung J, Campanucci VA. Front Cell Neurosci 16 994585 (2022)
  18. [Progress on structural biology of voltage-gated ion channels]. Song F, Guo J. Zhejiang Da Xue Xue Bao Yi Xue Ban 48 25-33 (2019)
  19. Modulation of sodium channels as pharmacological tool for pain therapy-highlights and gaps. Foadi N. Naunyn Schmiedebergs Arch Pharmacol 391 481-488 (2018)
  20. On mathematical modeling of the propagation of a wave ensemble within an individual axon. Peets T, Tamm K, Engelbrecht J. Front Cell Neurosci 17 1222785 (2023)

Articles citing this publication (46)

  1. The genetic architecture of target-site resistance to pyrethroid insecticides in the African malaria vectors Anopheles gambiae and Anopheles coluzzii. Clarkson CS, Miles A, Harding NJ, O'Reilly AO, Weetman D, Kwiatkowski D, Donnelly MJ, Anopheles gambiae 1000 Genomes Consortium. Mol Ecol 30 5303-5317 (2021)
  2. Molecular evidence of sequential evolution of DDT- and pyrethroid-resistant sodium channel in Aedes aegypti. Chen M, Du Y, Wu S, Nomura Y, Zhu G, Zhorov BS, Dong K. PLoS Negl Trop Dis 13 e0007432 (2019)
  3. Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Su Q, Hu F, Liu Y, Ge X, Mei C, Yu S, Shen A, Zhou Q, Yan C, Lei J, Zhang Y, Liu X, Wang T. Nat Commun 9 1192 (2018)
  4. Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin. Wisedchaisri G, Tonggu L, Gamal El-Din TM, McCord E, Zheng N, Catterall WA. Mol Cell 81 38-48.e4 (2021)
  5. Cannabidiol interactions with voltage-gated sodium channels. Sait LG, Sula A, Ghovanloo MR, Hollingworth D, Ruben PC, Wallace BA. Elife 9 e58593 (2020)
  6. A hypothetical molecular mechanism for TRPV1 activation that invokes rotation of an S6 asparagine. Kasimova MA, Yazici AT, Yudin Y, Granata D, Klein ML, Rohacs T, Carnevale V. J Gen Physiol 150 1554-1566 (2018)
  7. Molecular dissection of multiphase inactivation of the bacterial sodium channel NaVAb. Gamal El-Din TM, Lenaeus MJ, Ramanadane K, Zheng N, Catterall WA, Catterall WA. J Gen Physiol 151 174-185 (2019)
  8. Batrachotoxin acts as a stent to hold open homotetrameric prokaryotic voltage-gated sodium channels. Finol-Urdaneta RK, McArthur JR, Goldschen-Ohm MP, Gaudet R, Tikhonov DB, Zhorov BS, French RJ. J Gen Physiol 151 186-199 (2019)
  9. The voltage-gated sodium channel pore exhibits conformational flexibility during slow inactivation. Chatterjee S, Vyas R, Chalamalasetti SV, Sahu ID, Clatot J, Wan X, Lorigan GA, Deschênes I, Chakrapani S. J Gen Physiol 150 1333-1347 (2018)
  10. A tamoxifen receptor within a voltage-gated sodium channel. Sula A, Hollingworth D, Ng LCT, Larmore M, DeCaen PG, Wallace BA. Mol Cell 81 1160-1169.e5 (2021)
  11. Molecular basis of selective resistance of the bumblebee BiNav1 sodium channel to tau-fluvalinate. Wu S, Nomura Y, Du Y, Zhorov BS, Dong K. Proc Natl Acad Sci U S A 114 12922-12927 (2017)
  12. Pulsed Electric Fields Can Create Pores in the Voltage Sensors of Voltage-Gated Ion Channels. Rems L, Kasimova MA, Testa I, Delemotte L. Biophys J 119 190-205 (2020)
  13. Uncoupling sodium channel dimers restores the phenotype of a pain-linked Nav 1.7 channel mutation. Rühlmann AH, Körner J, Hausmann R, Bebrivenski N, Neuhof C, Detro-Dassen S, Hautvast P, Benasolo CA, Meents J, Machtens JP, Schmalzing G, Lampert A. Br J Pharmacol 177 4481-4496 (2020)
  14. Effects of protein-protein interactions and ligand binding on the ion permeation in KCNQ1 potassium channel. Jalily Hasani H, Ganesan A, Ahmed M, Barakat KH. PLoS One 13 e0191905 (2018)
  15. Opening TRPP2 (PKD2L1) requires the transfer of gating charges. Ng LCT, Vien TN, Yarov-Yarovoy V, DeCaen PG. Proc Natl Acad Sci U S A 116 15540-15549 (2019)
  16. 2StrucCompare: a webserver for visualizing small but noteworthy differences between protein tertiary structures through interrogation of the secondary structure content. Drew ED, Janes RW. Nucleic Acids Res 47 W477-W481 (2019)
  17. Mexiletine Block of Voltage-Gated Sodium Channels: Isoform- and State-Dependent Drug-Pore Interactions. Nakagawa H, Munakata T, Sunami A. Mol Pharmacol 95 236-244 (2019)
  18. Thermal melt circular dichroism spectroscopic studies for identifying stabilising amphipathic molecules for the voltage-gated sodium channel NavMs. Ireland SM, Sula A, Wallace BA. Biopolymers 109 e23067 (2018)
  19. Extremely Potent Block of Bacterial Voltage-Gated Sodium Channels by µ-Conotoxin PIIIA. Finol-Urdaneta RK, McArthur JR, Korkosh VS, Huang S, McMaster D, Glavica R, Tikhonov DB, Zhorov BS, French RJ. Mar Drugs 17 E510 (2019)
  20. Letter Optimized expression and purification of NavAb provide the structural insight into the voltage dependence. Irie K, Haga Y, Shimomura T, Fujiyoshi Y. FEBS Lett 592 274-283 (2018)
  21. Conservation and divergence in NaChBac and NaV1.7 pharmacology reveals novel drug interaction mechanisms. Zhu W, Li T, Silva JR, Chen J. Sci Rep 10 10730 (2020)
  22. Determining the molecular basis of voltage sensitivity in membrane proteins. Kasimova MA, Lindahl E, Delemotte L. J Gen Physiol 150 1444-1458 (2018)
  23. Propofol inhibits prokaryotic voltage-gated Na+ channels by promoting activation-coupled inactivation. Yang E, Granata D, Eckenhoff RG, Carnevale V, Covarrubias M. J Gen Physiol 150 1299-1316 (2018)
  24. Role of the Interaction Motif in Maintaining the Open Gate of an Open Sodium Channel. Ke S, Ulmschneider MB, Wallace BA, Ulmschneider JP. Biophys J 115 1920-1930 (2018)
  25. Conservation and variability of the pore-lining helices in P-loop channels. Tikhonov DB, Zhorov BS. Channels (Austin) 11 660-672 (2017)
  26. Integrative Approach with Electrophysiological and Theoretical Methods Reveals a New Role of S4 Positively Charged Residues in PKD2L1 Channel Voltage-Sensing. Numata T, Tsumoto K, Yamada K, Kurokawa T, Hirose S, Nomura H, Kawano M, Kurachi Y, Inoue R, Mori Y. Sci Rep 7 9760 (2017)
  27. Characterizing fenestration size in sodium channel subtypes and their accessibility to inhibitors. Tao E, Corry B. Biophys J 121 193-206 (2022)
  28. Propofol inhibits the voltage-gated sodium channel NaChBac at multiple sites. Wang Y, Yang E, Wells MM, Bondarenko V, Woll K, Carnevale V, Granata D, Klein ML, Eckenhoff RG, Dailey WP, Covarrubias M, Tang P, Xu Y. J Gen Physiol 150 1317-1331 (2018)
  29. Characterization of two kdr mutations at predicted pyrethroid receptor site 2 in the sodium channels of Aedes aegypti and Nilaparvata lugens. Sun H, Nomura Y, Du Y, Liu Z, Zhorov BS, Dong K. Insect Biochem Mol Biol 148 103814 (2022)
  30. Determinants of conductance of a bacterial voltage-gated sodium channel. Chen AY, Brooks BR, Damjanovic A. Biophys J 120 3050-3069 (2021)
  31. Regulation and drug modulation of a voltage-gated sodium channel: Pivotal role of the S4-S5 linker in activation and slow inactivation. Xiao J, Bondarenko V, Wang Y, Suma A, Wells M, Chen Q, Tillman T, Luo Y, Yu B, Dailey WP, Eckenhoff R, Tang P, Carnevale V, Klein ML, Xu Y. Proc Natl Acad Sci U S A 118 e2102285118 (2021)
  32. Single-molecule study of full-length NaChBac by planar lipid bilayer recording. Jo A, Hoi H, Zhou H, Gupta M, Montemagno CD. PLoS One 12 e0188861 (2017)
  33. Cross-kingdom auxiliary subunit modulation of a voltage-gated sodium channel. Molinarolo S, Lee S, Leisle L, Lueck JD, Granata D, Carnevale V, Ahern CA. J Biol Chem 293 4981-4992 (2018)
  34. Do sodium channel proteolytic fragments regulate sodium channel expression? Onwuli DO, Yañez-Bisbe L, Pinsach-Abuin ML, Tarradas A, Brugada R, Greenman J, Pagans S, Beltran-Alvarez P. Channels (Austin) 11 476-481 (2017)
  35. Protonation underlies tonic vs. use-dependent block. Carnevale V. Proc Natl Acad Sci U S A 115 3512-3514 (2018)
  36. Purification and Characterization of JZTx-14, a Potent Antagonist of Mammalian and Prokaryotic Voltage-Gated Sodium Channels. Zhang J, Tang D, Liu S, Hu H, Liang S, Tang C, Liu Z. Toxins (Basel) 10 E408 (2018)
  37. Up-regulation of voltage-gated sodium channels by peptides mimicking S4-S5 linkers reveals a variation of the ligand-receptor mechanism. Malak OA, Abderemane-Ali F, Wei Y, Coyan FC, Pontus G, Shaya D, Marionneau C, Loussouarn G. Sci Rep 10 5852 (2020)
  38. An α-π transition in S6 shapes the conformational cycle of the bacterial sodium channel NavAb. Choudhury K, Howard RJ, Delemotte L. J Gen Physiol 155 e202213214 (2023)
  39. Human voltage-gated Na+ and K+ channel properties underlie sustained fast AP signaling. Wilbers R, Metodieva VD, Duverdin S, Heyer DB, Galakhova AA, Mertens EJ, Versluis TD, Baayen JC, Idema S, Noske DP, Verburg N, Willemse RB, de Witt Hamer PC, Kole MHP, de Kock CPJ, Mansvelder HD, Goriounova NA. Sci Adv 9 eade3300 (2023)
  40. Ion channel selectivity through ion-modulated changes of selectivity filter pKa values. Chen AY, Brooks BR, Damjanovic A. Proc Natl Acad Sci U S A 120 e2220343120 (2023)
  41. Targeting the tamoxifen receptor within sodium channels to block osteoarthritic pain. McCollum MM, Larmore M, Ishihara S, Ng LCT, Kimura LF, Guadarrama E, Ta MC, Vien TN, Frost GB, Scheidt KA, Miller RE, DeCaen PG. Cell Rep 40 111248 (2022)
  42. The Sodium Channel Voltage Sensor Slides to Rest. Yarov-Yarovoy V, DeCaen P. Trends Pharmacol Sci 40 718-720 (2019)
  43. Determining the structure of the bacterial voltage-gated sodium channel NaChBac embedded in liposomes by cryo electron tomography and subtomogram averaging. Chang SS, Dijkman PM, Wiessing SA, Kudryashev M. Sci Rep 13 11523 (2023)
  44. Molecular Docking Studies on Anticonvulsant Enaminones Inhibiting Voltage-Gated Sodium Channels. Fang Y, Kirkland J, Amaye IJ, Jackson-Ayotunde P, George M. Open J Phys Chem 9 241-257 (2019)
  45. Molecular Dynamics Simulations of Ion Permeation in Human Voltage-Gated Sodium Channels. Alberini G, Alexis Paz S, Corradi B, Abrams CF, Benfenati F, Maragliano L. J Chem Theory Comput 19 2953-2972 (2023)
  46. The T1-tetramerisation domain of Kv1.2 rescues expression and preserves function of a truncated NaChBac sodium channel. D'Avanzo N, Miles AJ, Powl AM, Nichols CG, Wallace BA, O'Reilly AO. FEBS Lett 596 772-783 (2022)


Related citations provided by authors (1)

  1. Role of the C-terminal domain in the structure and function of tetrameric sodium channels.. Bagnéris C, Decaen PG, Hall BA, Naylor CE, Clapham DE, Kay CW, Wallace BA Nat Commun 4 2465 (2013)