5i08 Citations

Pre-fusion structure of a human coronavirus spike protein.

Abstract

HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 Å resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.

Reviews - 5i08 mentioned but not cited (10)

  1. COVID-19 and SARS-CoV-2. Modeling the present, looking at the future. Estrada E. Phys Rep 869 1-51 (2020)
  2. 50 Years of structural immunology. Wilson IA, Stanfield RL. J Biol Chem 296 100745 (2021)
  3. A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Yoshimoto FK. Protein J 40 260-295 (2021)
  4. Lassa virus glycoprotein: stopping a moving target. Hastie KM, Saphire EO. Curr Opin Virol 31 52-58 (2018)
  5. Drug repurposing against SARS-CoV-2 using computational approaches. Kumar S, Kovalenko S, Bhardwaj S, Sethi A, Gorobets NY, Desenko SM, Poonam, Rathi B. Drug Discov Today 27 2015-2027 (2022)
  6. Host Receptors of Influenza Viruses and Coronaviruses-Molecular Mechanisms of Recognition. Sriwilaijaroen N, Suzuki Y. Vaccines (Basel) 8 E587 (2020)
  7. Human coronavirus spike protein-host receptor recognition. Guruprasad L. Prog Biophys Mol Biol (2020)
  8. Just Keep Rolling?-An Encompassing Review towards Accelerated Vaccine Product Life Cycles. Stiefel J, Zimmer J, Schloßhauer JL, Vosen A, Kilz S, Balakin S. Vaccines (Basel) 11 1287 (2023)
  9. Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Everest H, Stevenson-Leggett P, Bailey D, Bickerton E, Keep S. Viruses 14 351 (2022)
  10. Structural Requirements and Plasticity of Receptor-Binding Domain in Human Coronavirus Spike. Li Y, Zheng P, Liu T, Shi C, Wang B, Xu Y, Jin T. Front Mol Biosci 9 930931 (2022)

Articles - 5i08 mentioned but not cited (38)

  1. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann A, Cornaby C, Bartelt L, Weiss S, Park Y, Edwards CE, Weimer E, Scherer EM, Rouphael N, Edupuganti S, Weiskopf D, Tse LV, Hou YJ, Margolis D, Sette A, Collins MH, Schmitz J, Baric RS, de Silva AM. Sci Immunol 5 eabc8413 (2020)
  2. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, Reddem ER, Yu J, Bahna F, Bimela J, Huang Y, Katsamba PS, Liu L, Nair MS, Rawi R, Olia AS, Wang P, Zhang B, Chuang GY, Ho DD, Sheng Z, Kwong PD, Shapiro L. Cell Host Microbe 29 819-833.e7 (2021)
  3. Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. Jaimes JA, André NM, Chappie JS, Millet JK, Whittaker GR. J Mol Biol 432 3309-3325 (2020)
  4. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, Pybus OG, McLellan JS, Wilson IA, Bowden TA, Ward AB, Crispin M. Nat Commun 11 2688 (2020)
  5. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, Cottrell CA, Becker MM, Wang L, Shi W, Kong WP, Andres EL, Kettenbach AN, Denison MR, Chappell JD, Graham BS, Ward AB, McLellan JS. Proc. Natl. Acad. Sci. U.S.A. 114 E7348-E7357 (2017)
  6. Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Shah M, Ahmad B, Choi S, Woo HG. Comput Struct Biotechnol J 18 3402-3414 (2020)
  7. Molecular Mechanisms Behind Anti SARS-CoV-2 Action of Lactoferrin. Miotto M, Di Rienzo L, Bò L, Boffi A, Ruocco G, Milanetti E. Front Mol Biosci 8 607443 (2021)
  8. Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. Shang J, Wan Y, Liu C, Yount B, Gully K, Yang Y, Auerbach A, Peng G, Baric R, Li F. PLoS Pathog 16 e1008392 (2020)
  9. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, Wang X. Cell Res. 27 119-129 (2017)
  10. RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps. Frenz B, Walls AC, Egelman EH, Veesler D, DiMaio F. Nat. Methods 14 797-800 (2017)
  11. Why are ACE2 binding coronavirus strains SARS-CoV/SARS-CoV-2 wild and NL63 mild? Rawat P, Jemimah S, Ponnuswamy PK, Gromiha MM. Proteins 89 389-398 (2021)
  12. Exploring the Association Between Sialic Acid and SARS-CoV-2 Spike Protein Through a Molecular Dynamics-Based Approach. Bò L, Miotto M, Di Rienzo L, Milanetti E, Ruocco G. Front Med Technol 2 614652 (2020)
  13. Genomic Feature Analysis of Betacoronavirus Provides Insights Into SARS and COVID-19 Pandemics. Li X, Chang J, Chen S, Wang L, Yau TO, Zhao Q, Hong Z, Ruan J, Duan G, Gao S. Front Microbiol 12 614494 (2021)
  14. Spike protein fusion loop controls SARS-CoV-2 fusogenicity and infectivity. Pal D. J Struct Biol 213 107713 (2021)
  15. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Kirchdoerfer RN, Wang N, Pallesen J, Wrapp D, Turner HL, Cottrell CA, Corbett KS, Graham BS, McLellan JS, Ward AB. Sci Rep 8 15701 (2018)
  16. Designing AbhiSCoVac - A single potential vaccine for all 'corona culprits': Immunoinformatics and immune simulation approaches. Choudhury A, Sen Gupta PS, Panda SK, Rana MK, Mukherjee S. J Mol Liq 351 118633 (2022)
  17. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Hulswit RJG, Lang Y, Bakkers MJG, Li W, Li Z, Schouten A, Ophorst B, van Kuppeveld FJM, Boons GJ, Bosch BJ, Huizinga EG, de Groot RJ. Proc. Natl. Acad. Sci. U.S.A. 116 2681-2690 (2019)
  18. Crystal structure of the S1 subunit N-terminal domain from DcCoV UAE-HKU23 spike protein. Cheng Y, He B, Yang J, Ye F, Lin S, Yang F, Chen Z, Chen Z, Cao Y, Lu G. Virology 535 74-82 (2019)
  19. Structural basis for human coronavirus attachment to sialic acid receptors. Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Boons GJ, Bosch BJ, Rey FA, de Groot RJ, Veesler D. Nat. Struct. Mol. Biol. 26 481-489 (2019)
  20. research-article Glycans on the SARS-CoV-2 Spike Control the Receptor Binding Domain Conformation. Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Kopp M, Haynes BF, Acharya P. bioRxiv 2020.06.26.173765 (2020)
  21. Identification of Evolutionary Trajectories Shared across Human Betacoronaviruses. Escalera-Zamudio M, Kosakovsky Pond SL, Martínez de la Viña N, Gutiérrez B, Inward RPD, Thézé J, van Dorp L, Castelán-Sánchez HG, Bowden TA, Pybus OG, Hulswit RJG. Genome Biol Evol 15 evad076 (2023)
  22. Identification of a conserved S2 epitope present on spike proteins from all highly pathogenic coronaviruses. Silva RP, Huang Y, Nguyen AW, Hsieh CL, Olaluwoye OS, Kaoud TS, Wilen RE, Qerqez AN, Park JG, Khalil AM, Azouz LR, Le KC, Bohanon AL, DiVenere AM, Liu Y, Lee AG, Amengor DA, Shoemaker SR, Costello SM, Padlan EA, Marqusee S, Martinez-Sobrido L, Dalby KN, D'Arcy S, McLellan JS, Maynard JA. Elife 12 e83710 (2023)
  23. Insight into vaccine development for Alpha-coronaviruses based on structural and immunological analyses of spike proteins. Shi Y, Shi J, Sun L, Tan Y, Wang G, Guo F, Hu G, Fu Y, Fu ZF, Xiao S, Peng G. J Virol JVI.02284-20 (2021)
  24. Structure and Mutations of SARS-CoV-2 Spike Protein: A Focused Overview. Mehra R, Kepp KP. ACS Infect Dis 8 29-58 (2022)
  25. Analysis of Antibody Neutralisation Activity against SARS-CoV-2 Variants and Seasonal Human Coronaviruses NL63, HKU1, and 229E Induced by Three Different COVID-19 Vaccine Platforms. Cantoni D, Siracusano G, Mayora-Neto M, Pastori C, Fantoni T, Lytras S, Di Genova C, Hughes J, On Behalf Of The Ambulatorio Medico San Luca Villanuova Group, Lopalco L, Temperton N. Vaccines (Basel) 11 58 (2022)
  26. Assessing Differential Binding of Aggregation-Induced Emission-Based Luminogens to Host Interacting Surface Proteins of SARS-CoV-2 and Influenza Virus-An in silico Approach. Tanneeru K, Bhatraju NK, Bhosale RS, Kalangi SK. Front Microbiol 12 766351 (2021)
  27. research-article Boosting of Cross-Reactive Antibodies to Endemic Coronaviruses by SARS-CoV-2 Infection but not Vaccination with Stabilized Spike. Crowley AR, Natarajan H, Hederman AP, Bobak CA, Weiner JA, Wieland-Alter W, Lee J, Bloch EM, Tobian AAR, Redd AD, Blankson JN, Wolf D, Goetghebuer T, Marchant A, Connor RI, Wright PF, Ackerman ME. medRxiv 2021.10.27.21265574 (2021)
  28. Boosting of cross-reactive antibodies to endemic coronaviruses by SARS-CoV-2 infection but not vaccination with stabilized spike. Crowley AR, Natarajan H, Hederman AP, Bobak CA, Weiner JA, Wieland-Alter W, Lee J, Bloch EM, Tobian AAR, Redd AD, Blankson JN, Wolf D, Goetghebuer T, Marchant A, Connor RI, Wright PF, Ackerman ME. Elife 11 e75228 (2022)
  29. Computational and comparative investigation of hydrophobic profile of spike protein of SARS-CoV-2 and SARS-CoV. Shekhawat U, Roy Chowdhury Chakravarty A. J Biol Phys 48 399-414 (2022)
  30. Conserved protein targets for developing pan-coronavirus drugs based on sequence and 3D structure similarity analyses. Ma M, Yang Y, Wu L, Zhou L, Shi Y, Han J, Xu Z, Zhu W. Comput Biol Med 145 105455 (2022)
  31. Deciphering the O-Glycosylation of HKU1 Spike Protein With the Dual-Functional Hydrophilic Interaction Chromatography Materials. Cui Y, Dong X, Zhang X, Chen C, Fu D, Li X, Liang X. Front Chem 9 707235 (2021)
  32. Mosaic RBD nanoparticles induce intergenus cross-reactive antibodies and protect against SARS-CoV-2 challenge. Lee DB, Kim H, Jeong JH, Jang US, Jang Y, Roh S, Jeon H, Kim EJ, Han SY, Maeng JY, Magez S, Radwanska M, Mun JY, Jun HS, Lee G, Song MS, Lee HR, Chung MS, Baek YH, Kim KH. Proc Natl Acad Sci U S A 120 e2208425120 (2023)
  33. SARS-CoV-2 Spike protein peptides displayed in the Pyrococcus furiosus RAD system preserve epitopes antigenicity, immunogenicity, and virus-neutralizing activity of antibodies. Cioffi VB, de Castro-Amarante MF, Lulla A, Andreata-Santos R, Cruz MC, Moreno ACR, de Oliveira Silva M, de Miranda Peres B, de Freitas Junior LHG, Moraes CB, Durigon EL, Gordon NC, Hyvönen M, de Souza Ferreira LC, Balan A. Sci Rep 13 16821 (2023)
  34. Sialoglycan binding triggers spike opening in a human coronavirus. Pronker MF, Creutznacher R, Drulyte I, Hulswit RJG, Li Z, van Kuppeveld FJM, Snijder J, Lang Y, Bosch BJ, Boons GJ, Frank M, de Groot RJ, Hurdiss DL. Nature (2023)
  35. Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans. Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Nat Commun 14 7175 (2023)
  36. Structure of the S1 subunit C-terminal domain from bat-derived coronavirus HKU5 spike protein. Han X, Qi J, Song H, Wang Q, Zhang Y, Wu Y, Lu G, Yuen KY, Shi Y, Gao GF. Virology 507 101-109 (2017)
  37. Unraveling the molecular basis of host cell receptor usage in SARS-CoV-2 and other human pathogenic β-CoVs. Pontes C, Ruiz-Serra V, Lepore R, Valencia A. Comput Struct Biotechnol J 19 759-766 (2021)
  38. research-article Using iCn3D and the World Wide Web for structure-based collaborative research: Analyzing molecular interactions at the root of COVID-19. Youkharibache P, Cachau R, Madej T, Wang J. bioRxiv 2020.07.01.182964 (2020)


Reviews citing this publication (164)

  1. Fusion of Enveloped Viruses in Endosomes. White JM, Whittaker GR. Traffic 17 593-614 (2016)
  2. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, Zhang LJ. Radiology 296 E15-E25 (2020)
  3. Coronavirus Spike Protein and Tropism Changes. Hulswit RJ, de Haan CA, Bosch BJ. Adv Virus Res 96 29-57 (2016)
  4. The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. Front Immunol 11 576622 (2020)
  5. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Wang Y, Grunewald M, Perlman S. Methods Mol Biol 2203 1-29 (2020)
  6. The HIV-1 envelope glycoprotein structure: nailing down a moving target. Ward AB, Wilson IA. Immunol. Rev. 275 21-32 (2017)
  7. The origins of SARS-CoV-2: A critical review. Holmes EC, Goldstein SA, Rasmussen AL, Robertson DL, Crits-Christoph A, Wertheim JO, Anthony SJ, Barclay WS, Boni MF, Doherty PC, Farrar J, Geoghegan JL, Jiang X, Leibowitz JL, Neil SJD, Skern T, Weiss SR, Worobey M, Andersen KG, Garry RF, Rambaut A. Cell 184 4848-4856 (2021)
  8. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Millet JK, Whittaker GR. Virology 517 3-8 (2018)
  9. SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Bettini E, Locci M. Vaccines (Basel) 9 147 (2021)
  10. Towards treatment planning of COVID-19: Rationale and hypothesis for the use of multiple immunosuppressive agents: Anti-antibodies, immunoglobulins, and corticosteroids. Saghazadeh A, Rezaei N. Int Immunopharmacol 84 106560 (2020)
  11. Potential role of interferons in treating COVID-19 patients. Haji Abdolvahab M, Moradi-Kalbolandi S, Zarei M, Bose D, Majidzadeh-A K, Farahmand L. Int Immunopharmacol 90 107171 (2021)
  12. A comprehensive review about SARS-CoV-2. Haque SM, Ashwaq O, Sarief A, Azad John Mohamed AK. Future Virol 15 625-648 (2020)
  13. Benefits and limitations of serological assays in COVID-19 infection. Sidiq Z, Hanif M, Dwivedi KK, Chopra KK. Indian J Tuberc 67 S163-S166 (2020)
  14. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Rey FA, Lok SM. Cell 172 1319-1334 (2018)
  15. Next-Generation Vaccines: Nanoparticle-Mediated DNA and mRNA Delivery. Ho W, Gao M, Li F, Li Z, Zhang XQ, Xu X. Adv Healthc Mater 10 e2001812 (2021)
  16. Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a Pandemic and Post-Pandemic World. Augustine R, Das S, Hasan A, S A, Abdul Salam S, Augustine P, Dalvi YB, Varghese R, Primavera R, Yassine HM, Thakor AS, Kevadiya BD. J Clin Med 9 E3372 (2020)
  17. Structure, Function, and Evolution of Coronavirus Spike Proteins. Li F. Annu Rev Virol 3 237-261 (2016)
  18. Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses. Borbone N, Piccialli G, Roviello GN, Oliviero G. Molecules 26 986 (2021)
  19. Resolution advances in cryo-EM enable application to drug discovery. Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH. Curr. Opin. Struct. Biol. 41 194-202 (2016)
  20. Molecular diversity of coronavirus host cell entry receptors. Millet JK, Jaimes JA, Whittaker GR. FEMS Microbiol Rev 45 fuaa057 (2021)
  21. Current methods for diagnosis of human coronaviruses: pros and cons. Benzigar MR, Bhattacharjee R, Baharfar M, Liu G. Anal Bioanal Chem 413 2311-2330 (2021)
  22. Perspectives in Peptide-Based Vaccination Strategies for Syndrome Coronavirus 2 Pandemic. Di Natale C, La Manna S, De Benedictis I, Brandi P, Marasco D. Front Pharmacol 11 578382 (2020)
  23. Structural Evaluation of the Spike Glycoprotein Variants on SARS-CoV-2 Transmission and Immune Evasion. Salleh MZ, Derrick JP, Deris ZZ. Int J Mol Sci 22 7425 (2021)
  24. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, Muslin C, Jaramillo AMG, Barba-Ostria C, Cevallos-Robalino D, Sanches-SanMiguel H, Unigarro L, Zalakeviciute R, Gadian N, López-Cortés A. Diagn Microbiol Infect Dis 98 115094 (2020)
  25. SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Khan A, Khan T, Ali S, Aftab S, Wang Y, Qiankun W, Khan M, Suleman M, Ali S, Heng W, Ali SS, Wei DQ, Mohammad A. Biomed Pharmacother 143 112176 (2021)
  26. The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Tse LV, Meganck RM, Graham RL, Baric RS. Front Microbiol 11 658 (2020)
  27. SARS-CoV-2, Early Entry Events. Chambers JP, Yu J, Valdes JJ, Arulanandam BP. J Pathog 2020 9238696 (2020)
  28. Minireview of progress in the structural study of SARS-CoV-2 proteins. Zhu G, Zhu C, Zhu Y, Sun F. Curr Res Microb Sci 1 53-61 (2020)
  29. Molecular Basis of the Therapeutical Potential of Clove (Syzygium aromaticum L.) and Clues to Its Anti-COVID-19 Utility. Vicidomini C, Roviello V, Roviello GN. Molecules 26 1880 (2021)
  30. Supramolecular Architecture of the Coronavirus Particle. Neuman BW, Buchmeier MJ. Adv Virus Res 96 1-27 (2016)
  31. Affinity Sensors for the Diagnosis of COVID-19. Drobysh M, Ramanaviciene A, Viter R, Ramanavicius A. Micromachines (Basel) 12 390 (2021)
  32. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. Bhalla N, Pan Y, Yang Z, Payam AF. ACS Nano 14 7783-7807 (2020)
  33. COVID-19 vaccine induced rhabdomyolysis: Case report with literature review. Nassar M, Chung H, Dhayaparan Y, Nyein A, Acevedo BJ, Chicos C, Zheng D, Barras M, Mohamed M, Alfishawy M, Nso N, Rizzo V, Kimball E. Diabetes Metab Syndr 15 102170 (2021)
  34. Molecular Evolution of Human Coronavirus Genomes. Forni D, Cagliani R, Clerici M, Sironi M. Trends Microbiol. 25 35-48 (2017)
  35. Neutralizing antibodies against SARS-CoV-2: current understanding, challenge and perspective. Huang Y, Sun H, Yu H, Li S, Zheng Q, Xia N. Antib Ther 3 285-299 (2020)
  36. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, Ma XL. Signal Transduct Target Ther 6 317 (2021)
  37. Flavonoids are promising safe therapy against COVID-19. Alzaabi MM, Hamdy R, Ashmawy NS, Hamoda AM, Alkhayat F, Khademi NN, Al Joud SMA, El-Keblawy AA, Soliman SSM. Phytochem Rev 21 291-312 (2022)
  38. Glycans of SARS-CoV-2 Spike Protein in Virus Infection and Antibody Production. Zhao X, Chen H, Wang H. Front Mol Biosci 8 629873 (2021)
  39. Antibodies to combat viral infections: development strategies and progress. Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Nat Rev Drug Discov 21 676-696 (2022)
  40. An overview of SARS-COV-2 epidemiology, mutant variants, vaccines, and management strategies. Farooqi T, Malik JA, Mulla AH, Al Hagbani T, Almansour K, Ubaid MA, Alghamdi S, Anwar S. J Infect Public Health 14 1299-1312 (2021)
  41. COVID-19: Review of Epidemiology and Potential Treatments Against 2019 Novel Coronavirus. Jan H, Faisal S, Khan A, Khan S, Usman H, Liaqat R, Shah SA. Discoveries (Craiova) 8 e108 (2020)
  42. Coronavirus Disease Pandemic (COVID-19): Challenges and a Global Perspective. Malik YS, Kumar N, Sircar S, Kaushik R, Bhat S, Dhama K, Gupta P, Goyal K, Singh MP, Ghoshal U, El Zowalaty ME, O R V, Yatoo MI, Tiwari R, Pathak M, Patel SK, Sah R, Rodriguez-Morales AJ, Ganesh B, Kumar P, Singh RK. Pathogens 9 (2020)
  43. Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic. Sun Y, Ho M. Antib Ther 3 246-256 (2020)
  44. Molecular Characteristics, Functions, and Related Pathogenicity of MERS-CoV Proteins. Li YH, Hu CY, Wu NP, Yao HP, Li LJ. Engineering (Beijing) 5 940-947 (2019)
  45. Review of COVID-19 Vaccines Approved in the United States of America for Emergency Use. Vasireddy D, Atluri P, Malayala SV, Vanaparthy R, Mohan G. J Clin Med Res 13 204-213 (2021)
  46. Antiviral lectins: Selective inhibitors of viral entry. Mitchell CA, Ramessar K, O'Keefe BR. Antiviral Res. 142 37-54 (2017)
  47. MERS-CoV spike protein: Targets for vaccines and therapeutics. Wang Q, Wong G, Lu G, Yan J, Gao GF. Antiviral Res. 133 165-177 (2016)
  48. Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy? Depfenhart M, de Villiers D, Lemperle G, Meyer M, Di Somma S. Intern Emerg Med 15 801-812 (2020)
  49. A review: Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies. Sánchez-Zuno GA, Matuz-Flores MG, González-Estevez G, Nicoletti F, Turrubiates-Hernández FJ, Mangano K, Muñoz-Valle JF. Int J Immunopathol Pharmacol 35 20587384211050199 (2021)
  50. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. Lin P, Wang M, Wei Y, Kim T, Wei X. MedComm (2020) (2020)
  51. Discovering small-molecule therapeutics against SARS-CoV-2. Tiwari V, Beer JC, Sankaranarayanan NV, Swanson-Mungerson M, Desai UR. Drug Discov Today 25 1535-1544 (2020)
  52. Promoting versatile vaccine development for emerging pandemics. Monrad JT, Sandbrink JB, Cherian NG. NPJ Vaccines 6 26 (2021)
  53. Structure-based immunogen design-leading the way to the new age of precision vaccines. Sesterhenn F, Bonet J, Correia BE. Curr Opin Struct Biol 51 163-169 (2018)
  54. Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19. Muralidar S, Gopal G, Visaga Ambi S. J Med Virol 93 5260-5276 (2021)
  55. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. Seifi T, Reza Kamali A. Med Drug Discov 100099 (2021)
  56. The human pandemic coronaviruses on the show: The spike glycoprotein as the main actor in the coronaviruses play. Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Lima LB, Montenegro RC. Int J Biol Macromol 179 1-19 (2021)
  57. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. Dzuvor CKO, Tettey EL, Danquah MK. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14 e1785 (2022)
  58. Biosensors for the Determination of SARS-CoV-2 Virus and Diagnosis of COVID-19 Infection. Drobysh M, Ramanaviciene A, Viter R, Chen CF, Samukaite-Bubniene U, Ratautaite V, Ramanavicius A. Int J Mol Sci 23 666 (2022)
  59. Role of SARS-CoV-2 and ACE2 variations in COVID-19. Antony P, Vijayan R. Biomed J 44 235-244 (2021)
  60. Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Sternberg A, Naujokat C. Life Sci 257 118056 (2020)
  61. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D, Ma D. Inflammation 44 13-34 (2021)
  62. Structure of SARS-CoV-2 spike protein. Zhang J, Xiao T, Cai Y, Chen B. Curr Opin Virol 50 173-182 (2021)
  63. COVID-19 in Children: Clinical Manifestations and Pharmacologic Interventions Including Vaccine Trials. Galindo R, Chow H, Rongkavilit C. Pediatr Clin North Am 68 961-976 (2021)
  64. Radiological and clinical spectrum of COVID-19: A major concern for public health. Verma HK. World J Radiol 13 53-63 (2021)
  65. The recent challenges of highly contagious COVID-19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy. Mohapatra RK, Pintilie L, Kandi V, Sarangi AK, Das D, Sahu R, Perekhoda L. Chem Biol Drug Des 96 1187-1208 (2020)
  66. The spike glycoprotein of highly pathogenic human coronaviruses: structural insights for understanding infection, evolution and inhibition. Qiao S, Zhang S, Ge J, Wang X. FEBS Open Bio 12 1602-1622 (2022)
  67. Emerging Roles of Coronavirus in Autoimmune Diseases. Zhou SY, Zhang C, Shu WJ, Chong LY, He J, Xu Z, Pan HF. Arch Med Res 52 665-672 (2021)
  68. Expression and characterization of SARS-CoV-2 spike proteins. Schaub JM, Chou CW, Kuo HC, Javanmardi K, Hsieh CL, Goldsmith J, DiVenere AM, Le KC, Wrapp D, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW, Wang N, Lavinder JJ, Ippolito GC, Maynard JA, McLellan JS, Finkelstein IJ. Nat Protoc 16 5339-5356 (2021)
  69. Mechanistic insights of host cell fusion of SARS-CoV-1 and SARS-CoV-2 from atomic resolution structure and membrane dynamics. Chakraborty H, Bhattacharjya S. Biophys Chem 265 106438 (2020)
  70. Obesity and its impact on COVID-19. de Leeuw AJM, Oude Luttikhuis MAM, Wellen AC, Müller C, Calkhoven CF. J Mol Med (Berl) 99 899-915 (2021)
  71. Point-of-Care Diagnostics of COVID-19: From Current Work to Future Perspectives. Hussein HA, Hassan RYA, Chino M, Febbraio F. Sensors (Basel) 20 (2020)
  72. Surface Chemistry Can Unlock Drivers of Surface Stability of SARS-CoV-2 in a Variety of Environmental Conditions. Joonaki E, Hassanpouryouzband A, Heldt CL, Areo O. Chem 6 2135-2146 (2020)
  73. The Transmission of SARS-CoV-2 Infection on the Ocular Surface and Prevention Strategies. Kitazawa K, Deinhardt-Emmer S, Inomata T, Deshpande S, Sotozono C. Cells 10 796 (2021)
  74. The perspectives of biomarker-based electrochemical immunosensors, artificial intelligence and the Internet of Medical Things toward COVID-19 diagnosis and management. Yadav AK, Verma D, Kumar A, Kumar P, Solanki PR. Mater Today Chem 20 100443 (2021)
  75. Virus-Receptor Interactions: The Key to Cellular Invasion. Maginnis MS. J. Mol. Biol. 430 2590-2611 (2018)
  76. While We Wait for a Vaccine Against SARS-CoV-2, Why Not Think About Available Drugs? Barrantes FJ. Front Physiol 11 820 (2020)
  77. A brief molecular insight of COVID-19: epidemiology, clinical manifestation, molecular mechanism, cellular tropism and immuno-pathogenesis. Singh S, Pandey R, Tomar S, Varshney R, Sharma D, Gangenahalli G. Mol Cell Biochem 476 3987-4002 (2021)
  78. COVID-19: Emergence of Infectious Diseases, Nanotechnology Aspects, Challenges, and Future Perspectives. Gupta A, Kumar S, Kumar R, Choudhary AK, Kumari K, Singh P, Kumar V. ChemistrySelect 5 7521-7533 (2020)
  79. Current Status of Laboratory Diagnosis for COVID-19: A Narrative Review. Russo A, Minichini C, Starace M, Astorri R, Calò F, Coppola N, Vanvitelli COVID-19 group. Infect Drug Resist 13 2657-2665 (2020)
  80. Epigenetic Mechanisms Underlying COVID-19 Pathogenesis. Kaneko S, Takasawa K, Asada K, Shinkai N, Bolatkan A, Yamada M, Takahashi S, Machino H, Kobayashi K, Komatsu M, Hamamoto R. Biomedicines 9 1142 (2021)
  81. Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin-angiotensin-aldosterone system (RAAS) dysregulation. Augustine R, S A, Nayeem A, Salam SA, Augustine P, Dan P, Maureira P, Mraiche F, Gentile C, Hansbro PM, McClements L, Hasan A. Chem Biol Interact 351 109738 (2022)
  82. Leveraging deep learning to improve vaccine design. Hederman AP, Ackerman ME. Trends Immunol 44 333-344 (2023)
  83. Potential small-molecule drugs as available weapons to fight novel coronavirus (2019-nCoV): A review. Rahimkhoei V, Jabbari N, Nourani A, Sharifi S, Akbari A. Cell Biochem Funct 39 4-9 (2021)
  84. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Suhail S, Zajac J, Fossum C, Lowater H, McCracken C, Severson N, Laatsch B, Narkiewicz-Jodko A, Johnson B, Liebau J, Bhattacharyya S, Hati S. Protein J 39 644-656 (2020)
  85. SARS-CoV-2: Origin, Evolution, and Targeting Inhibition. Ning S, Yu B, Wang Y, Wang F. Front Cell Infect Microbiol 11 676451 (2021)
  86. Targeting Viral Surface Proteins through Structure-Based Design. Narkhede YB, Gonzalez KJ, Strauch EM. Viruses 13 1320 (2021)
  87. The broad-spectrum antiviral recommendations for drug discovery against COVID-19. Hazafa A, Ur-Rahman K, Haq IU, Jahan N, Mumtaz M, Farman M, Naeem H, Abbas F, Naeem M, Sadiqa S, Bano S. Drug Metab Rev 52 408-424 (2020)
  88. Advances in COVID-19 mRNA vaccine development. Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Signal Transduct Target Ther 7 94 (2022)
  89. An Update on mRNA-Based Viral Vaccines. Jeeva S, Kim KH, Shin CH, Wang BZ, Kang SM. Vaccines (Basel) 9 965 (2021)
  90. Angiotensin-converting enzyme 2: The old door for new severe acute respiratory syndrome coronavirus 2 infection. Tan HW, Xu YM, Lau ATY. Rev Med Virol 30 e2122 (2020)
  91. Bovine Coronavirus Immune Milk Against COVID-19. Arenas A, Borge C, Carbonero A, Garcia-Bocanegra I, Cano-Terriza D, Caballero J, Arenas-Montes A. Front Immunol 12 637152 (2021)
  92. Calming the cytokine storm of COVID-19 through inhibition of JAK2/STAT3 signaling. Gajjela BK, Zhou MM. Drug Discov Today 27 390-400 (2022)
  93. Contributions of single-particle cryoelectron microscopy toward fighting COVID-19. Rapp M, Shapiro L, Frank J. Trends Biochem Sci 47 117-123 (2022)
  94. Coronavirus Disease 2019: A Comprehensive Review of Etiology, Pathogenesis, Diagnosis, and Ongoing Clinical Trials. Sarvepalli D. Cureus 12 e8076 (2020)
  95. Dangerous Pathogens as a Potential Problem for Public Health. Janik E, Ceremuga M, Niemcewicz M, Bijak M. Medicina (Kaunas) 56 E591 (2020)
  96. Dissecting Virus Infectious Cycles by Cryo-Electron Microscopy. Lee KK, Gui L. PLoS Pathog. 12 e1005625 (2016)
  97. Drug Weaponry to Fight Against SARS-CoV-2. Cabezón E, Arechaga I. Front Mol Biosci 7 204 (2020)
  98. Elucidating the microscopic and computational techniques to study the structure and pathology of SARS-CoVs. Kaniyala Melanthota S, Banik S, Chakraborty I, Pallen S, Gopal D, Chakrabarti S, Mazumder N. Microsc Res Tech 83 1623-1638 (2020)
  99. Glycan Nanostructures of Human Coronaviruses. Guo W, Lakshminarayanan H, Rodriguez-Palacios A, Salata RA, Xu K, Draz MS. Int J Nanomedicine 16 4813-4830 (2021)
  100. How Antibodies Recognize Pathogenic Viruses: Structural Correlates of Antibody Neutralization of HIV-1, SARS-CoV-2, and Zika. Abernathy ME, Dam KA, Esswein SR, Jette CA, Bjorkman PJ. Viruses 13 2106 (2021)
  101. Layer-By-Layer Nanocoating of Antiviral Polysaccharides on Surfaces to Prevent Coronavirus Infections. Otto DP, de Villiers MM. Molecules 25 (2020)
  102. Lectins and lectibodies: potential promising antiviral agents. Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Cell Mol Biol Lett 27 37 (2022)
  103. Molecular and Clinical Investigation of COVID-19: From Pathogenesis and Immune Responses to Novel Diagnosis and Treatment. Kashani NR, Azadbakht J, Ehteram H, Kashani HH, Rajabi-Moghadam H, Ahmad E, Nikzad H, Hosseini ES. Front Mol Biosci 9 770775 (2022)
  104. Molecular biology of coronaviruses: current knowledge. Artika IM, Dewantari AK, Wiyatno A. Heliyon 6 e04743 (2020)
  105. Molecular scaffolds from mother nature as possible lead compounds in drug design and discovery against coronaviruses: A landscape analysis of published literature and molecular docking studies. Khursheed A, Jain V, Rasool A, Rather MA, Malik NA, Shalla AH. Microb Pathog 157 104933 (2021)
  106. Nano-therapeutic strategies to target coronavirus. Rauf MA, Tasleem M, Bhise K, Tatiparti K, Sau S, Iyer AK. View (Beijing) 2 20200155 (2021)
  107. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. Fuentes-Prior P. J Biol Chem (2020)
  108. SARS-CoV-2 variants evolved during the early stage of the pandemic and effects of mutations on adaptation in Wuhan populations. Awadasseid A, Wu Y, Tanaka Y, Zhang W. Int J Biol Sci 17 97-106 (2021)
  109. Structure-Based Vaccine Antigen Design. Graham BS, Gilman MSA, McLellan JS. Annu. Rev. Med. 70 91-104 (2019)
  110. Taming of Covid-19: potential and emerging application of mesenchymal stem cells. Najafi-Ghalehlou N, Roudkenar MH, Langerodi HZ, Roushandeh AM. Cytotechnology 73 253-298 (2021)
  111. The Coming of Age of Nucleic Acid Vaccines during COVID-19. Rando HM, Lordan R, Kolla L, Sell E, Lee AJ, Wellhausen N, Naik A, Kamil JP, COVID-19 Review Consortium, Gitter A, Greene CS. mSystems 8 e0092822 (2023)
  112. Therapeutically effective covalent spike protein inhibitors in treatment of SARS-CoV-2. Choudhary V, Gupta A, Sharma R, Parmar HS. J Proteins Proteom 12 257-270 (2021)
  113. Update of the current knowledge on genetics, evolution, immunopathogenesis, and transmission for coronavirus disease 19 (COVID-19). Tizaoui K, Zidi I, Lee KH, Ghayda RA, Hong SH, Li H, Smith L, Koyanagi A, Jacob L, Kronbichler A, Shin JI. Int J Biol Sci 16 2906-2923 (2020)
  114. 2020 update on human coronaviruses: One health, one world. Zhao X, Ding Y, Du J, Fan Y. Med Nov Technol Devices 8 100043 (2020)
  115. Accelerating clinical trial development in vaccinology: COVID-19 and beyond. Corey L, Miner MD. Curr Opin Immunol 76 102206 (2022)
  116. Analysis of the molecular mechanism of SARS-CoV-2 antibodies. Jin D, Wei J, Sun J. Biochem Biophys Res Commun 566 45-52 (2021)
  117. COVID-19 challenges: From SARS-CoV-2 infection to effective point-of-care diagnosis by electrochemical biosensing platforms. Campos-Ferreira D, Visani V, Córdula C, Nascimento GA, Montenegro LML, Schindler HC, Cavalcanti IMF. Biochem Eng J 176 108200 (2021)
  118. COVID-19 mRNA vaccines: Platforms and current developments. Szabó GT, Mahiny AJ, Vlatkovic I. Mol Ther 30 1850-1868 (2022)
  119. COVID-19 outbreak: history, mechanism, transmission, structural studies and therapeutics. Yesudhas D, Srivastava A, Gromiha MM. Infection (2020)
  120. Can anti-parasitic drugs help control COVID-19? Panahi Y, Dadkhah M, Talei S, Gharari Z, Asghariazar V, Abdolmaleki A, Matin S, Molaei S. Future Virol (2022)
  121. Cathepsin L in COVID-19: From Pharmacological Evidences to Genetics. Gomes CP, Fernandes DE, Casimiro F, da Mata GF, Passos MT, Varela P, Mastroianni-Kirsztajn G, Pesquero JB. Front Cell Infect Microbiol 10 589505 (2020)
  122. Confronting the threat of SARS-CoV-2: Realities, challenges and therapeutic strategies (Review). Wang R, Luo X, Liu F, Luo S. Exp Ther Med 21 155 (2021)
  123. Coronavirus envelope protein: current knowledge. Schoeman D, Fielding BC. Virol. J. 16 69 (2019)
  124. Cross-species virus transmission and its pandemic potential. Choudhury PR, Saha T, Goel S, Shah JM, Ganjewala D. Bull Natl Res Cent 46 18 (2022)
  125. Cryo-electron microscopy in the fight against COVID-19-mechanism of virus entry. Bodakuntla S, Kuhn CC, Biertümpfel C, Mizuno N. Front Mol Biosci 10 1252529 (2023)
  126. Current diagnostic and therapeutic strategies for COVID-19. Chen BB, Liu ML, Huang CZ. J Pharm Anal (2021)
  127. Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of Vaccine Design. Xia X. Viruses 13 (2021)
  128. Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. Yadav M, Dhagat S, Eswari JS. Eur J Pharm Sci 155 105522 (2020)
  129. Exploitation of glycosylation in enveloped virus pathobiology. Watanabe Y, Bowden TA, Wilson IA, Crispin M. Biochim Biophys Acta Gen Subj 1863 1480-1497 (2019)
  130. Exploring the magic bullets to identify Achilles' heel in SARS-CoV-2: Delving deeper into the sea of possible therapeutic options in Covid-19 disease: An update. Thakur S, Mayank, Sarkar B, Ansari AJ, Khandelwal A, Arya A, Poduri R, Joshi G. Food Chem Toxicol 147 111887 (2021)
  131. From Molecular Pathology of COVID 19 to Nigella Sativum as a Treatment Option: Scientific Based Evidence of Its Myth or Reality. Atif M, Naz F, Akhtar J, Imran M, Saleem S, Akram J, Imran M, Ullah MI. Chin J Integr Med 28 88-95 (2022)
  132. Getting glued in the sea. Fan H. Polym J 55 653-664 (2023)
  133. HIV infection and the implication for COVID-19 vaccination. Oyelade T, Raya RP, Latief K. Public Health Chall 1 e14 (2022)
  134. Host Sex Steroids Interact With Virus Infection: New Insights Into Sex Disparity in Infectious Diseases. Wu J, Zhang L, Wang X. Front Microbiol 12 747347 (2021)
  135. Interaction of SARS-CoV-2 With RAS / ACE2 in the Female Reproductive System. Zafari Zangeneh F. J Family Reprod Health 16 1-8 (2022)
  136. Managing the COVID-19 Pandemic: Research Strategies Based on the Evolutionary and Molecular Characteristics of Coronaviruses. Majid S, Farooq R, Khan MS, Rashid S, Bhat SA, Wani HA, Qureshi W. SN Compr Clin Med 1-10 (2020)
  137. Molecular mechanism, diagnosis, and potential treatment for novel coronavirus (COVID-19): a current literature review and perspective. Ratre YK, Kahar N, Bhaskar LVKS, Bhattacharya A, Verma HK. 3 Biotech 11 94 (2021)
  138. Nanomedicine for the SARS-CoV-2: State-of-the-Art and Future Prospects. Varahachalam SP, Lahooti B, Chamaneh M, Bagchi S, Chhibber T, Morris K, Bolanos JF, Kim NY, Kaushik A. Int J Nanomedicine 16 539-560 (2021)
  139. New insights on possible vaccine development against SARS-CoV-2. Chaudhry SN, Hazafa A, Mumtaz M, Kalsoom U, Abbas S, Kainaat A, Bilal S, Zafar N, Siddique A, Zafar A. Life Sci 260 118421 (2020)
  140. New-Onset Diabetes Mellitus, Hypertension, Dyslipidaemia as Sequelae of COVID-19 Infection-Systematic Review. Wrona M, Skrypnik D. Int J Environ Res Public Health 19 13280 (2022)
  141. Nucleic Acid-Based Diagnostic Tests for the Detection SARS-CoV-2: An Update. Yu CY, Chan KG, Yean CY, Ang GY. Diagnostics (Basel) 11 (2021)
  142. PEDV: Insights and Advances into Types, Function, Structure, and Receptor Recognition. Lin F, Zhang H, Li L, Yang Y, Zou X, Chen J, Tang X. Viruses 14 1744 (2022)
  143. Peptides and peptidomimetics as therapeutic agents for Covid-19. Dahal A, Sonju JJ, Kousoulas KG, Jois SD. Pept Sci (Hoboken) e24245 (2021)
  144. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Shah JN, Guo GQ, Krishnan A, Ramesh M, Katari NK, Shahbaaz M, Abdellattif MH, Singh SK, Dua K. Therapie 77 319-328 (2022)
  145. Present cum future of SARS-CoV-2 virus and its associated control of virus-laden air pollutants leading to potential environmental threat - A global review. Mukherjee S, Boral S, Siddiqi H, Mishra A, Meikap BC. J Environ Chem Eng 9 104973 (2021)
  146. Renin-angiotensin system at the interface of COVID-19 infection. Gul R, Kim UH, Alfadda AA. Eur J Pharmacol 890 173656 (2021)
  147. Roles of Sialyl Glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 Infections. Sriwilaijaroen N, Suzuki Y. Methods Mol Biol 2556 243-271 (2022)
  148. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. Viruses 15 558 (2023)
  149. SARS-CoV-2-host cell surface interactions and potential antiviral therapies. Butnariu AB, Look A, Grillo M, Tabish TA, McGarvey MJ, Pranjol MZI. Interface Focus 12 20200081 (2022)
  150. Severe acute respiratory syndrome-coronavirus-2 spike (S) protein based vaccine candidates: State of the art and future prospects. Arashkia A, Jalilvand S, Mohajel N, Afchangi A, Azadmanesh K, Salehi-Vaziri M, Fazlalipour M, Pouriayevali MH, Jalali T, Mousavi Nasab SD, Roohvand F, Shoja Z, SARS CoV-2 Rapid Response Team of Pasteur Institute of Iran (PII). Rev Med Virol e2183 (2020)
  151. Sex hormones and immune system: Menopausal hormone therapy in the context of COVID-19 pandemic. Averyanova M, Vishnyakova P, Yureneva S, Yakushevskaya O, Fatkhudinov T, Elchaninov A, Sukhikh G. Front Immunol 13 928171 (2022)
  152. Small-Molecule Inhibition of Viral Fusion Glycoproteins. Liu HY, Yang PL. Annu Rev Virol 8 459-489 (2021)
  153. Structural insights into SARS-CoV-2 proteins. Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, Prashar V, Gupta GD, Panicker L, Kumar M. J Mol Biol 433 166725 (2021)
  154. Targeted therapy in Coronavirus disease 2019 (COVID-19): Implication from cell and gene therapy to immunotherapy and vaccine. Shirzad M, Nourigorji M, Sajedi A, Ranjbar M, Rasti F, Sourani Z, Moradi M, Mostafa Mir S, Memar MY. Int Immunopharmacol 111 109161 (2022)
  155. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Mohammed El Tabaa M, Mohammed El Tabaa M. Biochem Pharmacol 178 114057 (2020)
  156. The COVID-19 pandemic face mask waste: A blooming threat to the marine environment. Dharmaraj S, Ashokkumar V, Hariharan S, Manibharathi A, Show PL, Chong CT, Ngamcharussrivichai C. Chemosphere 272 129601 (2021)
  157. The Potential of Mesenchymal Stem Cells for the Treatment of Cytokine Storm due to COVID-19. Li X, Yan M, Chen J, Luo Y. Biomed Res Int 2021 3178796 (2021)
  158. The neuropathological impact of COVID-19: a review. Ibrahim Fouad G. Bull Natl Res Cent 45 19 (2021)
  159. The role of vaccines in the COVID-19 pandemic: what have we learned? Krammer F. Semin Immunopathol (2023)
  160. The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Belém MO, Pinto YO, Moreira HHT, Magalhaes ICL, Castelo-Branco DSCM, Montenegro RC, de Andrade CR. Int J Biol Macromol 208 105-125 (2022)
  161. Towards Quantum-Chemical Level Calculations of SARS-CoV-2 Spike Protein Variants of Concern by First Principles Density Functional Theory. Ching WY, Adhikari P, Jawad B, Podgornik R. Biomedicines 11 517 (2023)
  162. Update on treatment and preventive interventions against COVID-19: an overview of potential pharmacological agents and vaccines. Xiao Y, Xu H, Guo W, Zhao Y, Luo Y, Wang M, He Z, Ding Z, Liu J, Deng L, Sha F, Ma X. Mol Biomed 1 16 (2020)
  163. Viral Membrane Fusion and the Transmembrane Domain. Barrett CT, Dutch RE. Viruses 12 (2020)
  164. Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses. Johnson BA, Graham RL, Menachery VD. Virology 517 30-37 (2018)

Articles citing this publication (237)

  1. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Science 367 1260-1263 (2020)
  2. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Cell 181 281-292.e6 (2020)
  3. A serological assay to detect SARS-CoV-2 seroconversion in humans. Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, Jiang K, Arunkumar GA, Jurczyszak D, Polanco J, Bermudez-Gonzalez M, Kleiner G, Aydillo T, Miorin L, Fierer DS, Lugo LA, Kojic EM, Stoever J, Liu STH, Cunningham-Rundles C, Felgner PL, Moran T, García-Sastre A, Caplivski D, Cheng AC, Kedzierska K, Vapalahti O, Hepojoki JM, Simon V, Krammer F. Nat Med 26 1033-1036 (2020)
  4. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, Robbiani DF, Nussenzweig MC, West AP, Bjorkman PJ. Nature 588 682-687 (2020)
  5. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Geers D, Shamier MC, Bogers S, den Hartog G, Gommers L, Nieuwkoop NN, Schmitz KS, Rijsbergen LC, van Osch JAT, Dijkhuizen E, Smits G, Comvalius A, van Mourik D, Caniels TG, van Gils MJ, Sanders RW, Oude Munnink BB, Molenkamp R, de Jager HJ, Haagmans BL, de Swart RL, Koopmans MPG, van Binnendijk RS, de Vries RD, GeurtsvanKessel CH. Sci Immunol 6 eabj1750 (2021)
  6. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott A, Flach B, Doria-Rose NA, Corbett KS, Morabito KM, O'Dell S, Schmidt SD, Swanson PA, Padilla M, Mascola JR, Neuzil KM, Bennett H, Sun W, Peters E, Makowski M, Albert J, Cross K, Buchanan W, Pikaart-Tautges R, Ledgerwood JE, Graham BS, Beigel JH, mRNA-1273 Study Group. N Engl J Med 383 1920-1931 (2020)
  7. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, Limbo O, Smith C, Song G, Woehl J, Yang L, Abbott RK, Callaghan S, Garcia E, Hurtado J, Parren M, Peng L, Ramirez S, Ricketts J, Ricciardi MJ, Rawlings SA, Wu NC, Yuan M, Smith DM, Nemazee D, Teijaro JR, Voss JE, Wilson IA, Andrabi R, Briney B, Landais E, Sok D, Jardine JG, Burton DR. Science 369 956-963 (2020)
  8. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K, Mahrokhian SH, Nkolola JP, Liu J, Li Z, Chandrashekar A, Martinez DR, Loos C, Atyeo C, Fischinger S, Burke JS, Slein MD, Chen Y, Zuiani A, Lelis FJN, Travers M, Habibi S, Pessaint L, Van Ry A, Blade K, Brown R, Cook A, Finneyfrock B, Dodson A, Teow E, Velasco J, Zahn R, Wegmann F, Bondzie EA, Dagotto G, Gebre MS, He X, Jacob-Dolan C, Kirilova M, Kordana N, Lin Z, Maxfield LF, Nampanya F, Nityanandam R, Ventura JD, Wan H, Cai Y, Chen B, Schmidt AG, Wesemann DR, Baric RS, Alter G, Andersen H, Lewis MG, Barouch DH. Science 369 806-811 (2020)
  9. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, Winter H, Meister M, Veith C, Boots AW, Hennig BP, Kreuter M, Conrad C, Eils R. EMBO J 39 e105114 (2020)
  10. Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, Cameroni E, Gopal R, Dai M, Lanzavecchia A, Zambon M, Rey FA, Corti D, Veesler D. Cell 176 1026-1039.e15 (2019)
  11. Controlling the SARS-CoV-2 spike glycoprotein conformation. Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil SMC, Kopp M, Li D, Parks R, Hsu AL, Borgnia MJ, Haynes BF, Acharya P. Nat Struct Mol Biol 27 925-933 (2020)
  12. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, He L, Chen Y, Wu J, Shi Z, Zhou Y, Du L, Li F. J Virol 94 (2020)
  13. Structural insights into coronavirus entry. Tortorici MA, Veesler D. Adv Virus Res 105 93-116 (2019)
  14. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Boopathi S, Poma AB, Kolandaivel P. J Biomol Struct Dyn 1-10 (2020)
  15. Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Song G, He WT, Callaghan S, Anzanello F, Huang D, Ricketts J, Torres JL, Beutler N, Peng L, Vargas S, Cassell J, Parren M, Yang L, Ignacio C, Smith DM, Voss JE, Nemazee D, Ward AB, Rogers T, Burton DR, Andrabi R. Nat Commun 12 2938 (2021)
  16. Structural basis for broad coronavirus neutralization. Sauer MM, Tortorici MA, Park YJ, Walls AC, Homad L, Acton OJ, Bowen JE, Wang C, Xiong X, de van der Schueren W, Quispe J, Hoffstrom BG, Bosch BJ, McGuire AT, Veesler D. Nat Struct Mol Biol 28 478-486 (2021)
  17. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Barnes CO, West AP, Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR, Koranda N, Gristick HB, Gaebler C, Muecksch F, Lorenzi JCC, Finkin S, Hägglöf T, Hurley A, Millard KG, Weisblum Y, Schmidt F, Hatziioannou T, Bieniasz PD, Caskey M, Robbiani DF, Nussenzweig MC, Bjorkman PJ. Cell 182 828-842.e16 (2020)
  18. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Lv H, Wu NC, Tsang OT, Yuan M, Perera RAPM, Leung WS, So RTY, Chan JMC, Yip GK, Chik TSH, Wang Y, Choi CYC, Lin Y, Ng WW, Zhao J, Poon LLM, Peiris JSM, Wilson IA, Mok CKP. Cell Rep 31 107725 (2020)
  19. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K, Tostanoski LH, He X, Martinez DR, Rutten L, Bos R, van Manen D, Vellinga J, Custers J, Langedijk JP, Kwaks T, Bakkers MJG, Zuijdgeest D, Rosendahl Huber SK, Atyeo C, Fischinger S, Burke JS, Feldman J, Hauser BM, Caradonna TM, Bondzie EA, Dagotto G, Gebre MS, Hoffman E, Jacob-Dolan C, Kirilova M, Li Z, Lin Z, Mahrokhian SH, Maxfield LF, Nampanya F, Nityanandam R, Nkolola JP, Patel S, Ventura JD, Verrington K, Wan H, Pessaint L, Van Ry A, Blade K, Strasbaugh A, Cabus M, Brown R, Cook A, Zouantchangadou S, Teow E, Andersen H, Lewis MG, Cai Y, Chen B, Schmidt AG, Reeves RK, Baric RS, Lauffenburger DA, Alter G, Stoffels P, Mammen M, Van Hoof J, Schuitemaker H, Barouch DH. Nature 586 583-588 (2020)
  20. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, Roose K, van Schie L, VIB-CMB COVID-19 Response Team, Hoffmann M, Pöhlmann S, Graham BS, Callewaert N, Schepens B, Saelens X, McLellan JS. Cell 181 1004-1015.e15 (2020)
  21. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Chen X, Li R, Pan Z, Qian C, Yang Y, You R, Zhao J, Liu P, Gao L, Li Z, Huang Q, Xu L, Tang J, Tian Q, Yao W, Hu L, Yan X, Zhou X, Wu Y, Deng K, Zhang Z, Qian Z, Chen Y, Ye L. Cell Mol Immunol 17 647-649 (2020)
  22. Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Ozorowski G, Pallesen J, de Val N, Lyumkis D, Cottrell CA, Torres JL, Copps J, Stanfield RL, Cupo A, Pugach P, Moore JP, Wilson IA, Ward AB. Nature 547 360-363 (2017)
  23. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, Himansu S, Schäfer A, Ziwawo CT, DiPiazza AT, Dinnon KH, Elbashir SM, Shaw CA, Woods A, Fritch EJ, Martinez DR, Bock KW, Minai M, Nagata BM, Hutchinson GB, Wu K, Henry C, Bahl K, Garcia-Dominguez D, Ma L, Renzi I, Kong WP, Schmidt SD, Wang L, Zhang Y, Phung E, Chang LA, Loomis RJ, Altaras NE, Narayanan E, Metkar M, Presnyak V, Liu C, Louder MK, Shi W, Leung K, Yang ES, West A, Gully KL, Stevens LJ, Wang N, Wrapp D, Doria-Rose NA, Stewart-Jones G, Bennett H, Alvarado GS, Nason MC, Ruckwardt TJ, McLellan JS, Denison MR, Chappell JD, Moore IN, Morabito KM, Mascola JR, Baric RS, Carfi A, Graham BS. Nature 586 567-571 (2020)
  24. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? Liu P, Jiang JZ, Wan XF, Hua Y, Li L, Zhou J, Wang X, Hou F, Chen J, Zou J, Chen J. PLoS Pathog 16 e1008421 (2020)
  25. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Park YJ, Walls AC, Wang Z, Sauer MM, Li W, Tortorici MA, Bosch BJ, DiMaio F, Veesler D. Nat Struct Mol Biol 26 1151-1157 (2019)
  26. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Walls AC, Tortorici MA, Frenz B, Snijder J, Li W, Rey FA, DiMaio F, Bosch BJ, Veesler D. Nat. Struct. Mol. Biol. 23 899-905 (2016)
  27. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ, Zambon M, Ellis J, Lewis PA, Hiscox JA, Matthews DA. Genome Med 12 68 (2020)
  28. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X, Gao GF. Nat Commun 8 15092 (2017)
  29. A recombinant spike protein subunit vaccine confers protective immunity against SARS-CoV-2 infection and transmission in hamsters. Wu Y, Huang X, Yuan L, Wang S, Zhang Y, Xiong H, Chen R, Ma J, Qi R, Nie M, Xu J, Zhang Z, Chen L, Wei M, Zhou M, Cai M, Shi Y, Zhang L, Yu H, Hong J, Wang Z, Hong Y, Yue M, Li Z, Chen D, Zheng Q, Li S, Chen Y, Cheng T, Zhang J, Zhang T, Zhu H, Zhao Q, Yuan Q, Guan Y, Xia N. Sci Transl Med 13 eabg1143 (2021)
  30. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Yu S, Zhu Y, Xu J, Yao G, Zhang P, Wang M, Zhao Y, Lin G, Chen H, Chen L, Zhang J. Phytomedicine 85 153364 (2021)
  31. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Lv Z, Deng YQ, Ye Q, Cao L, Sun CY, Fan C, Huang W, Sun S, Sun Y, Zhu L, Chen Q, Wang N, Nie J, Cui Z, Zhu D, Shaw N, Li XF, Li Q, Xie L, Wang Y, Rao Z, Qin CF, Wang X. Science 369 1505-1509 (2020)
  32. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R, Peng W, Widagdo W, Tortorici MA, van Dieren B, Lang Y, van Lent JWM, Paulson JC, de Haan CAM, de Groot RJ, van Kuppeveld FJM, Haagmans BL, Bosch BJ. Proc. Natl. Acad. Sci. U.S.A. 114 E8508-E8517 (2017)
  33. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. McKay PF, Hu K, Blakney AK, Samnuan K, Brown JC, Penn R, Zhou J, Bouton CR, Rogers P, Polra K, Lin PJC, Barbosa C, Tam YK, Barclay WS, Shattock RJ. Nat Commun 11 3523 (2020)
  34. Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines. Du L, Tai W, Yang Y, Zhao G, Zhu Q, Sun S, Liu C, Tao X, Tseng CK, Perlman S, Jiang S, Zhou Y, Li F. Nat Commun 7 13473 (2016)
  35. Congress Prevention and treatment of respiratory viral infections: Presentations on antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral Group conference. McKimm-Breschkin JL, Jiang S, Hui DS, Beigel JH, Govorkova EA, Lee N. Antiviral Res 149 118-142 (2018)
  36. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Park JE, Li K, Barlan A, Fehr AR, Perlman S, McCray PB, Gallagher T. Proc. Natl. Acad. Sci. U.S.A. 113 12262-12267 (2016)
  37. Prior and novel coronaviruses, Coronavirus Disease 2019 (COVID-19), and human reproduction: what is known? Segars J, Katler Q, McQueen DB, Kotlyar A, Glenn T, Knight Z, Feinberg EC, Taylor HS, Toner JP, Kawwass JF, American Society for Reproductive Medicine Coronavirus/COVID-19 Task Force. Fertil Steril 113 1140-1149 (2020)
  38. Immunogenicity and efficacy of mRNA COVID-19 vaccine MRT5500 in preclinical animal models. Kalnin KV, Plitnik T, Kishko M, Zhang J, Zhang D, Beauvais A, Anosova NG, Tibbitts T, DiNapoli J, Ulinski G, Piepenhagen P, Cummings SM, Bangari DS, Ryan S, Huang PD, Huleatt J, Vincent D, Fries K, Karve S, Goldman R, Gopani H, Dias A, Tran K, Zacharia M, Gu X, Boeglin L, Abysalh J, Vargas J, Beaulieu A, Shah M, Jeannotte T, Gillis K, Chivukula S, Swearingen R, Landolfi V, Fu TM, DeRosa F, Casimiro D. NPJ Vaccines 6 61 (2021)
  39. Robust and persistent SARS-CoV-2 infection in the human intestinal brush border expressing cells. Lee S, Yoon GY, Myoung J, Kim SJ, Ahn DG. Emerg Microbes Infect 9 2169-2179 (2020)
  40. ACE2, Much More Than Just a Receptor for SARS-COV-2. Samavati L, Uhal BD. Front Cell Infect Microbiol 10 317 (2020)
  41. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Luo C, Zhang W, Li F. PLoS Pathog. 14 e1007009 (2018)
  42. Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies. Li C, Li W, Lucio de Esesarte E, Guo H, van den Elzen P, Aarts E, van den Born E, Rottier PJM, Bosch BJ. J. Virol. 91 (2017)
  43. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Yang TJ, Chang YC, Ko TP, Draczkowski P, Chien YC, Chang YC, Wu KP, Khoo KH, Chang HW, Hsu SD. Proc Natl Acad Sci U S A 117 1438-1446 (2020)
  44. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Jaimes JA, Whittaker GR. Virology 517 108-121 (2018)
  45. Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Jette CA, Cohen AA, Gnanapragasam PNP, Muecksch F, Lee YE, Huey-Tubman KE, Schmidt F, Hatziioannou T, Bieniasz PD, Nussenzweig MC, West AP, Keeffe JR, Bjorkman PJ, Barnes CO. Cell Rep 36 109760 (2021)
  46. Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Verkhivker GM, Agajanian S, Oztas DY, Gupta G. Biochemistry 60 1459-1484 (2021)
  47. A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Laczkó D, Hogan MJ, Toulmin SA, Hicks P, Lederer K, Gaudette BT, Castaño D, Amanat F, Muramatsu H, Oguin TH, Ojha A, Zhang L, Mu Z, Parks R, Manzoni TB, Roper B, Strohmeier S, Tombácz I, Arwood L, Nachbagauer R, Karikó K, Greenhouse J, Pessaint L, Porto M, Putman-Taylor T, Strasbaugh A, Campbell TA, Lin PJC, Tam YK, Sempowski GD, Farzan M, Choe H, Saunders KO, Haynes BF, Andersen H, Eisenlohr LC, Weissman D, Krammer F, Bates P, Allman D, Locci M, Pardi N. Immunity 53 724-732.e7 (2020)
  48. Integrated Biophysical Modeling of the SARS-CoV-2 Spike Protein Binding and Allosteric Interactions with Antibodies. Verkhivker GM, Di Paola L. J Phys Chem B 125 4596-4619 (2021)
  49. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Li W, Hulswit RJG, Kenney SP, Widjaja I, Jung K, Alhamo MA, van Dieren B, van Kuppeveld FJM, Saif LJ, Bosch BJ. Proc. Natl. Acad. Sci. U.S.A. 115 E5135-E5143 (2018)
  50. Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry. Shirato K, Kanou K, Kawase M, Matsuyama S. J. Virol. 91 (2017)
  51. D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R, LaBranche CC, Edwards RJ, Sutherland L, Santra S, Mansouri K, Gobeil S, McDanal C, Pardi N, Hengartner N, Lin PJC, Tam Y, Shaw PA, Lewis MG, Boesler C, Şahin U, Acharya P, Haynes BF, Korber B, Montefiori DC. Cell Host Microbe 29 23-31.e4 (2021)
  52. Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape. Wang L, Shi W, Chappell JD, Joyce MG, Zhang Y, Kanekiyo M, Becker MM, van Doremalen N, Fischer R, Wang N, Corbett KS, Choe M, Mason RD, Van Galen JG, Zhou T, Saunders KO, Tatti KM, Haynes LM, Kwong PD, Modjarrad K, Kong WP, McLellan JS, Denison MR, Munster VJ, Mascola JR, Graham BS. J. Virol. 92 (2018)
  53. Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Biochemistry 60 2153-2169 (2021)
  54. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, Ray S. J Biomol Struct Dyn 1-11 (2020)
  55. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA, Veesler D. Proc. Natl. Acad. Sci. U.S.A. 114 11157-11162 (2017)
  56. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. Earnest JT, Hantak MP, Li K, McCray PB, Perlman S, Gallagher T. PLoS Pathog. 13 e1006546 (2017)
  57. Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection. Qing E, Hantak M, Perlman S, Gallagher T. mBio 11 (2020)
  58. Nano-Enabled COVID-19 Vaccines: Meeting the Challenges of Durable Antibody Plus Cellular Immunity and Immune Escape. Nel AE, Miller JF. ACS Nano 15 5793-5818 (2021)
  59. Structure-guided covalent stabilization of coronavirus spike glycoprotein trimers in the closed conformation. McCallum M, Walls AC, Bowen JE, Corti D, Veesler D. Nat Struct Mol Biol 27 942-949 (2020)
  60. The sprint to solve coronavirus protein structures - and disarm them with drugs. Scudellari M. Nature 581 252-255 (2020)
  61. A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein. Chen Y, Lu S, Jia H, Deng Y, Zhou J, Huang B, Yu Y, Lan J, Wang W, Lou Y, Qin K, Tan W. Emerg Microbes Infect 6 e37 (2017)
  62. Structure and immune recognition of the porcine epidemic diarrhea virus spike protein. Kirchdoerfer RN, Bhandari M, Martini O, Sewall LM, Bangaru S, Yoon KJ, Ward AB. Structure 29 385-392.e5 (2021)
  63. Cell Entry of Porcine Epidemic Diarrhea Coronavirus Is Activated by Lysosomal Proteases. Liu C, Ma Y, Yang Y, Zheng Y, Shang J, Zhou Y, Jiang S, Du L, Li J, Li F. J. Biol. Chem. 291 24779-24786 (2016)
  64. Editorial Coalition: Advocacy for prospective clinical trials to test the post-exposure potential of hydroxychloroquine against COVID-19. Picot S, Marty A, Bienvenu AL, Blumberg LH, Dupouy-Camet J, Carnevale P, Kano S, Jones MK, Daniel-Ribeiro CT, Mas-Coma S. One Health 9 100131 (2020)
  65. Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit. Kandeel M, Yamamoto M, Tani H, Kobayashi A, Gohda J, Kawaguchi Y, Park BK, Kwon HJ, Inoue JI, Alkattan A. Biomol Ther (Seoul) 29 282-289 (2021)
  66. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Chen X, Pan Z, Yue S, Yu F, Zhang J, Yang Y, Li R, Liu B, Yang X, Gao L, Li Z, Lin Y, Huang Q, Xu L, Tang J, Hu L, Zhao J, Liu P, Zhang G, Chen Y, Deng K, Ye L. Signal Transduct Target Ther 5 180 (2020)
  67. Neutralizing Human Antibodies against Severe Acute Respiratory Syndrome Coronavirus 2 Isolated from a Human Synthetic Fab Phage Display Library. Kim YJ, Lee MH, Lee SR, Chung HY, Kim K, Lee TG, Kim DY. Int J Mol Sci 22 1913 (2021)
  68. Broadly neutralizing antibodies to SARS-related viruses can be readily induced in rhesus macaques. He WT, Yuan M, Callaghan S, Musharrafieh R, Song G, Silva M, Beutler N, Lee WH, Yong P, Torres JL, Melo M, Zhou P, Zhao F, Zhu X, Peng L, Huang D, Anzanello F, Ricketts J, Parren M, Garcia E, Ferguson M, Rinaldi W, Rawlings SA, Nemazee D, Smith DM, Briney B, Safonova Y, Rogers TF, Dan JM, Zhang Z, Weiskopf D, Sette A, Crotty S, Irvine DJ, Ward AB, Wilson IA, Burton DR, Andrabi R. Sci Transl Med 14 eabl9605 (2022)
  69. Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Hurdiss DL, Drulyte I, Lang Y, Shamorkina TM, Pronker MF, van Kuppeveld FJM, Snijder J, de Groot RJ. Nat Commun 11 4646 (2020)
  70. Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Tai W, Du L, Zhou Y, Zhang W, Li F. J. Virol. 92 (2018)
  71. Evaluating Clinical Course and Risk Factors of Infection and Demographic Characteristics of Pregnant Women with COVID-19 in Hamadan Province, West of Iran. Sattari M, Bashirian S, Masoumi SZ, Shayan A, Jenabi E, Ghelichkhani S, Ali Shirzadeh A, Jalili E, Alimohammadi S. J Res Health Sci 20 e00488 (2020)
  72. Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections. Xiong X, Tortorici MA, Snijder J, Yoshioka C, Walls AC, Li W, McGuire AT, Rey FA, Bosch BJ, Veesler D. J. Virol. 92 (2018)
  73. Mutational analysis of structural proteins of SARS-CoV-2. Jakhmola S, Indari O, Kashyap D, Varshney N, Das A, Manivannan E, Jha HC. Heliyon 7 e06572 (2021)
  74. Nucleocapsid protein of SARS-CoV-2 is a potential target for developing new generation of vaccine. Feng W, Xiang Y, Wu L, Chen Z, Li Q, Chen J, Guo Y, Xia D, Chen N, Zhang L, Zhu S, Zhao KN. J Clin Lab Anal 36 e24479 (2022)
  75. Species-Specific Colocalization of Middle East Respiratory Syndrome Coronavirus Attachment and Entry Receptors. Widagdo W, Okba NMA, Li W, de Jong A, de Swart RL, Begeman L, van den Brand JMA, Bosch BJ, Haagmans BL. J Virol 93 (2019)
  76. Temperature effect on the SARS-CoV-2: A molecular dynamics study of the spike homotrimeric glycoprotein. Martí D, Torras J, Bertran O, Turon P, Alemán C. Comput Struct Biotechnol J 19 1848-1862 (2021)
  77. In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19. López-Cortés A, Guevara-Ramírez P, Kyriakidis NC, Barba-Ostria C, León Cáceres Á, Guerrero S, Ortiz-Prado E, Munteanu CR, Tejera E, Cevallos-Robalino D, Gómez-Jaramillo AM, Simbaña-Rivera K, Granizo-Martínez A, Pérez-M G, Moreno S, García-Cárdenas JM, Zambrano AK, Pérez-Castillo Y, Cabrera-Andrade A, Puig San Andrés L, Proaño-Castro C, Bautista J, Quevedo A, Varela N, Quiñones LA, Paz-Y-Miño C. Front Pharmacol 12 598925 (2021)
  78. A Novel Synonymous Mutation of SARS-CoV-2: Is This Possible to Affect Their Antigenicity and Immunogenicity? Kim SJ, Nguyen VG, Park YH, Park BK, Chung HC. Vaccines (Basel) 8 (2020)
  79. Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Zhou T, Tsybovsky Y, Gorman J, Rapp M, Cerutti G, Chuang GY, Katsamba PS, Sampson JM, Schön A, Bimela J, Boyington JC, Nazzari A, Olia AS, Shi W, Sastry M, Stephens T, Stuckey J, Teng IT, Wang P, Wang S, Zhang B, Friesner RA, Ho DD, Mascola JR, Shapiro L, Kwong PD. Cell Host Microbe 28 867-879.e5 (2020)
  80. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. Song W, Gui M, Wang X, Xiang Y. PLoS Pathog. 14 e1007236 (2018)
  81. Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. Qing E, Kicmal T, Kumar B, Hawkins GM, Timm E, Perlman S, Gallagher T. mBio 12 e0159021 (2021)
  82. Electrochemical Determination of Interaction between SARS-CoV-2 Spike Protein and Specific Antibodies. Drobysh M, Liustrovaite V, Baradoke A, Rucinskiene A, Ramanaviciene A, Ratautaite V, Viter R, Chen CF, Plikusiene I, Samukaite-Bubniene U, Slibinskas R, Ciplys E, Simanavicius M, Zvirbliene A, Kucinskaite-Kodze I, Ramanavicius A. Int J Mol Sci 23 6768 (2022)
  83. Exploring nature's bounty: identification of Withania somnifera as a promising source of therapeutic agents against COVID-19 by virtual screening and in silico evaluation. Srivastava A, Siddiqui S, Ahmad R, Mehrotra S, Ahmad B, Srivastava AN. J Biomol Struct Dyn 40 1858-1908 (2022)
  84. Furin: A Potential Therapeutic Target for COVID-19. Wu C, Zheng M, Yang Y, Gu X, Yang K, Li M, Liu Y, Zhang Q, Zhang P, Wang Y, Wang Q, Xu Y, Zhou Y, Zhang Y, Chen L, Li H. iScience 23 101642 (2020)
  85. Letter Identification of potential cross-protective epitope between a new type of coronavirus (2019-nCoV) and severe acute respiratory syndrome virus. Qiu T, Mao T, Wang Y, Zhou M, Qiu J, Wang J, Xu J, Cao Z. J Genet Genomics 47 115-117 (2020)
  86. Rapid characterization of spike variants via mammalian cell surface display. Javanmardi K, Chou CW, Terrace CI, Annapareddy A, Kaoud TS, Guo Q, Lutgens J, Zorkic H, Horton AP, Gardner EC, Nguyen G, Boutz DR, Goike J, Voss WN, Kuo HC, Dalby KN, Gollihar JD, Finkelstein IJ. Mol Cell 81 5099-5111.e8 (2021)
  87. Structure and Immune Recognition of the HIV Glycan Shield. Crispin M, Ward AB, Wilson IA. Annu Rev Biophys (2018)
  88. Biochemical Analysis of Coronavirus Spike Glycoprotein Conformational Intermediates during Membrane Fusion. Kawase M, Kataoka M, Shirato K, Matsuyama S. J Virol 93 (2019)
  89. Conformational flexibility and structural variability of SARS-CoV2 S protein. Pramanick I, Sengupta N, Mishra S, Pandey S, Girish N, Das A, Dutta S. Structure 29 834-845.e5 (2021)
  90. Deciphering the protein motion of S1 subunit in SARS-CoV-2 spike glycoprotein through integrated computational methods. Tian H, Tao P. J Biomol Struct Dyn 39 6705-6712 (2021)
  91. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Mahmud S, Rafi MO, Paul GK, Promi MM, Shimu MSS, Biswas S, Emran TB, Dhama K, Alyami SA, Moni MA, Saleh MA. Sci Rep 11 15431 (2021)
  92. How Did We Get a COVID-19 Vaccine in Less Than 1 Year? Wherry EJ, Jaffee EM, Warren N, D'Souza G, Ribas A, AACR COVID-19 and Cancer Task Force. Clin Cancer Res 27 2136-2138 (2021)
  93. One or two dose regimen of the SARS-CoV-2 synthetic DNA vaccine INO-4800 protects against respiratory tract disease burden in nonhuman primate challenge model. Gooch KE, Smith TRF, Salguero FJ, Fotheringham SA, Watson RJ, Dennis MJ, Handley A, Humphries HE, Longet S, Tipton T, Sarfas C, Sibley L, Slack GS, Rayner E, Ryan KA, Schultheis K, Ramos SJ, White A, Charlton S, Sharpe SA, Gleeson F, Humeau LM, Hall Y, Broderick KE, Carroll MW. Vaccine 39 4885-4894 (2021)
  94. A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties. Millet JK, Goldstein ME, Labitt RN, Hsu HL, Daniel S, Whittaker GR. Emerg Microbes Infect 5 e126 (2016)
  95. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease. Douglas MG, Kocher JF, Scobey T, Baric RS, Cockrell AS. Virology 517 98-107 (2018)
  96. Cross-reactive antibodies after SARS-CoV-2 infection and vaccination. Grobben M, van der Straten K, Brouwer PJ, Brinkkemper M, Maisonnasse P, Dereuddre-Bosquet N, Appelman B, Lavell AA, van Vught LA, Burger JA, Poniman M, Oomen M, Eggink D, Bijl TP, van Willigen HD, Wynberg E, Verkaik BJ, Figaroa OJ, de Vries PJ, Boertien TM, Amsterdam UMC COVID-19 S3/HCW study group, Bomers MK, Sikkens JJ, Le Grand R, de Jong MD, Prins M, Chung AW, de Bree GJ, Sanders RW, van Gils MJ. Elife 10 e70330 (2021)
  97. Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1. Ou X, Guan H, Qin B, Mu Z, Wojdyla JA, Wang M, Dominguez SR, Qian Z, Cui S. Nat Commun 8 15216 (2017)
  98. Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. Zhu L, Deng YQ, Zhang RR, Cui Z, Sun CY, Fan CF, Xing X, Huang W, Chen Q, Zhang NN, Ye Q, Cao TS, Wang N, Wang L, Cao L, Wang H, Kong D, Ma J, Luo C, Zhang Y, Nie J, Sun Y, Lv Z, Shaw N, Li Q, Li XF, Hu J, Xie L, Rao Z, Wang Y, Wang X, Qin CF. Natl Sci Rev 8 nwaa297 (2021)
  99. NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion. Mahajan M, Chatterjee D, Bhuvaneswari K, Pillay S, Bhattacharjya S. Biochim Biophys Acta Biomembr 1860 407-415 (2018)
  100. Protection against infectious bronchitis virus by spike ectodomain subunit vaccine. Eldemery F, Joiner KS, Toro H, van Santen VL. Vaccine 35 5864-5871 (2017)
  101. SARS-CoV-2, an evolutionary perspective of interaction with human ACE2 reveals undiscovered amino acids necessary for complex stability. Armijos-Jaramillo V, Yeager J, Muslin C, Perez-Castillo Y. Evol Appl (2020)
  102. Structural mapping of antibody landscapes to human betacoronavirus spike proteins. Bangaru S, Antanasijevic A, Kose N, Sewall LM, Jackson AM, Suryadevara N, Zhan X, Torres JL, Copps J, de la Peña AT, Crowe JE, Ward AB. Sci Adv 8 eabn2911 (2022)
  103. The S2 Subunit of Infectious Bronchitis Virus Beaudette Is a Determinant of Cellular Tropism. Bickerton E, Maier HJ, Stevenson-Leggett P, Armesto M, Britton P. J. Virol. 92 (2018)
  104. The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner. Lai AL, Millet JK, Daniel S, Freed JH, Whittaker GR. J. Mol. Biol. 429 3875-3892 (2017)
  105. DisCoVering potential candidates of RNAi-based therapy for COVID-19 using computational methods. Rohani N, Ahmadi Moughari F, Eslahchi C. PeerJ 9 e10505 (2021)
  106. Discovery of Clioquinol and analogues as novel inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 infection, ACE2 and ACE2 - Spike protein interaction in vitro. Olaleye OA, Kaur M, Onyenaka C, Adebusuyi T. Heliyon 7 e06426 (2021)
  107. Lipidation increases antiviral activities of coronavirus fusion-inhibiting peptides. Park JE, Gallagher T. Virology 511 9-18 (2017)
  108. Mice Immunized with the Vaccine Candidate HexaPro Spike Produce Neutralizing Antibodies against SARS-CoV-2. Seephetdee C, Buasri N, Bhukhai K, Srisanga K, Manopwisedjaroen S, Lertjintanakit S, Phueakphud N, Pakiranay C, Kangwanrangsan N, Srichatrapimuk S, Kirdlarp S, Sungkanuparph S, Chutipongtanate S, Thitithanyanont A, Hongeng S, Wongtrakoongate P. Vaccines (Basel) 9 498 (2021)
  109. Prediction of repurposed drugs for Coronaviruses using artificial intelligence and machine learning. Rajput A, Thakur A, Mukhopadhyay A, Kamboj S, Rastogi A, Gautam S, Jassal H, Kumar M. Comput Struct Biotechnol J 19 3133-3148 (2021)
  110. Update on the target structures of SARS-CoV-2: A systematic review. Prajapat M, Sarma P, Shekhar N, Prakash A, Avti P, Bhattacharyya A, Kaur H, Kumar S, Bansal S, Sharma AR, Medhi B. Indian J Pharmacol 52 142-149 (2020)
  111. In silico screening of known small molecules to bind ACE2 specific RBD on Spike glycoprotein of SARS-CoV-2 for repurposing against COVID-19. Br B, Damle H, Ganju S, Damle L. F1000Res 9 663 (2020)
  112. Alternative conformations of a major antigenic site on RSV F. Jones HG, Battles MB, Lin CC, Bianchi S, Corti D, McLellan JS. PLoS Pathog. 15 e1007944 (2019)
  113. Antigenic Evolution on a Global Scale Reveals the Potential Natural Selection of Severe Acute Respiratory Syndrome-Coronavirus 2 by Pre-existing Cross-Reactive T-Cell Immunity. Zhang C, Jin X, Chen X, Qiu L, Leng Q, Qiu T. Front Microbiol 12 599562 (2021)
  114. Computational investigation of potential inhibitors of novel coronavirus 2019 through structure-based virtual screening, molecular dynamics and density functional theory studies. Mishra SS, Ranjan S, Sharma CS, Singh HP, Kalra S, Kumar N. J Biomol Struct Dyn 1-13 (2020)
  115. Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution. Yu J, Qiao S, Guo R, Wang X. Nat Commun 11 3070 (2020)
  116. Evaluation of bioactive compounds from Boswellia serrata against SARS-CoV-2. Roy A, Menon T. Vegetos 35 404-414 (2022)
  117. Genetic Variation and Evolution of the 2019 Novel Coronavirus. Dimonte S, Babakir-Mina M, Hama-Soor T, Ali S. Public Health Genomics 24 54-66 (2021)
  118. High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. Tan TJC, Mou Z, Lei R, Ouyang WO, Yuan M, Song G, Andrabi R, Wilson IA, Kieffer C, Dai X, Matreyek KA, Wu NC. Nat Commun 14 2003 (2023)
  119. Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers. Kandeel M, Al-Taher A, Li H, Schwingenschlogl U, Al-Nazawi M. Comput Biol Chem 75 205-212 (2018)
  120. Receptor-binding loops in alphacoronavirus adaptation and evolution. Wong AHM, Tomlinson ACA, Zhou D, Satkunarajah M, Chen K, Sharon C, Desforges M, Talbot PJ, Rini JM. Nat Commun 8 1735 (2017)
  121. Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Tahir Ul Qamar M, Shahid F, Aslam S, Ashfaq UA, Aslam S, Fatima I, Fareed MM, Zohaib A, Chen LL. Infect Dis Poverty 9 132 (2020)
  122. Tackling Covid-19 using disordered-to-order transition of residues in the spike protein upon angiotensin-converting enzyme 2 binding. Yesudhas D, Srivastava A, Sekijima M, Gromiha MM. Proteins 89 1158-1166 (2021)
  123. Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Widjaja I, Wang C, van Haperen R, Gutiérrez-Álvarez J, van Dieren B, Okba NMA, Raj VS, Li W, Fernandez-Delgado R, Grosveld F, van Kuppeveld FJM, Haagmans BL, Enjuanes L, Drabek D, Bosch BJ. Emerg Microbes Infect 8 516-530 (2019)
  124. Treatment with Exogenous Trypsin Expands In Vitro Cellular Tropism of the Avian Coronavirus Infectious Bronchitis Virus. Stevenson-Leggett P, Keep S, Bickerton E. Viruses 12 E1102 (2020)
  125. A Single Immunization with Spike-Functionalized Ferritin Vaccines Elicits Neutralizing Antibody Responses against SARS-CoV-2 in Mice. Powell AE, Zhang K, Sanyal M, Tang S, Weidenbacher PA, Li S, Pham TD, Pak JE, Chiu W, Kim PS. ACS Cent Sci 7 183-199 (2021)
  126. ACE2 models of frequently contacted animals provide clues of their SARS-CoV-2 S protein affinity and viral susceptibility. Ma C, Gong C. J Med Virol 93 4469-4479 (2021)
  127. Analysis of natural compounds against the activity of SARS-CoV-2 NSP15 protein towards an effective treatment against COVID-19: a theoretical and computational biology approach. Motwalli O, Alazmi M. J Mol Model 27 160 (2021)
  128. Atypical Antibody Dynamics During Human Coronavirus HKU1 Infections. Sechan F, Grobben M, Edridge AWD, Jebbink MF, Loens K, Ieven M, Goossens H, van Hemert-Glaubitz S, van Gils MJ, van der Hoek L. Front Microbiol 13 853410 (2022)
  129. Bifunctional molecules targeting SARS-CoV-2 spike and the polymeric Ig receptor display neutralization activity and mucosal enrichment. White I, Tamot N, Doddareddy R, Ho J, Jiao Q, Harvilla PB, Yang TY, Geist B, Borrok MJ, Truppo MD, Ganesan R, Chowdhury P, Zwolak A. MAbs 13 1987180 (2021)
  130. Emerging mutation in SARS-CoV-2 spike: Widening distribution over time in different geographic areas. Ysrafil Y, Mus R, Gama NI, Rahmaisyah D, Nur'amalia R. Biomed J 44 570-581 (2021)
  131. Immunology of SARS-CoV-2 infections and vaccines. Schenten D, Bhattacharya D. Adv Immunol 151 49-97 (2021)
  132. Insights from molecular structure predictions of the infectious bronchitis virus S1 spike glycoprotein. Leyson CLM, Jordan BJ, Jackwood MW. Infect. Genet. Evol. 46 124-129 (2016)
  133. Integrative immunoinformatics paradigm for predicting potential B-cell and T-cell epitopes as viable candidates for subunit vaccine design against COVID-19 virulence. Sarma VR, Olotu FA, Soliman MES. Biomed J 44 447-460 (2021)
  134. Protective Efficacy of Rhesus Adenovirus COVID-19 Vaccines against Mouse-Adapted SARS-CoV-2. Tostanoski LH, Gralinski LE, Martinez DR, Schaefer A, Mahrokhian SH, Li Z, Nampanya F, Wan H, Yu J, Chang A, Liu J, McMahan K, Ventura JD, Dinnon KH, Leist SR, Baric RS, Barouch DH. J Virol 95 e0097421 (2021)
  135. Binding of SARS-COV-2 (COVID-19) and SARS-COV to human ACE2: Identifying binding sites and consequences on ACE2 stiffness. Faisal HMN, Katti KS, Katti DR. Chem Phys 551 111353 (2021)
  136. Characterization of the Cross-Species Transmission Potential for Porcine Deltacoronaviruses Expressing Sparrow Coronavirus Spike Protein in Commercial Poultry. Alhamo MA, Boley PA, Liu M, Niu X, Yadav KK, Lee C, Saif LJ, Wang Q, Kenney SP. Viruses 14 1225 (2022)
  137. Chimeric Fusion (F) and Attachment (G) Glycoprotein Antigen Delivery by mRNA as a Candidate Nipah Vaccine. Loomis RJ, DiPiazza AT, Falcone S, Ruckwardt TJ, Morabito KM, Abiona OM, Chang LA, Caringal RT, Presnyak V, Narayanan E, Tsybovsky Y, Nair D, Hutchinson GB, Stewart-Jones GBE, Kueltzo LA, Himansu S, Mascola JR, Carfi A, Graham BS. Front Immunol 12 772864 (2021)
  138. Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. VanPatten S, He M, Altiti A, F Cheng K, Ghanem MH, Al-Abed Y. Future Med Chem 12 1647-1656 (2020)
  139. Exploring the intrinsic dynamics of SARS-CoV-2, SARS-CoV and MERS-CoV spike glycoprotein through normal mode analysis using anisotropic network model. Majumder S, Chaudhuri D, Datta J, Giri K. J Mol Graph Model 102 107778 (2021)
  140. Hendra virus fusion protein transmembrane domain contributes to pre-fusion protein stability. Webb S, Nagy T, Moseley H, Fried M, Dutch R. J. Biol. Chem. 292 5685-5694 (2017)
  141. Lessons from the pandemic: Responding to emerging zoonotic viral diseases-a Keystone Symposia report. Cable J, Fauci A, Dowling WE, Günther S, Bente DA, Yadav PD, Madoff LC, Wang LF, Arora RK, Van Kerkhove M, Chu MC, Jaenisch T, Epstein JH, Frost SDW, Bausch DG, Hensley LE, Bergeron É, Sitaras I, Gunn MD, Geisbert TW, Muñoz-Fontela C, Krammer F, de Wit E, Nordenfelt P, Saphire EO, Gilbert SC, Corbett KS, Branco LM, Baize S, van Doremalen N, Krieger MA, Clemens SAC, Hesselink R, Hartman D. Ann N Y Acad Sci 1518 209-225 (2022)
  142. Nanoceutical Fabric Prevents COVID-19 Spread through Expelled Respiratory Droplets: A Combined Computational, Spectroscopic, and Antimicrobial Study. Adhikari A, Pal U, Bayan S, Mondal S, Ghosh R, Darbar S, Saha-Dasgupta T, Ray SK, Pal SK. ACS Appl Bio Mater 4 5471-5484 (2021)
  143. Protein-protein conjugation enhances the immunogenicity of SARS-CoV-2 receptor-binding domain (RBD) vaccines. Scaria PV, Rowe CG, Chen BB, Dickey TH, Renn JP, Lambert LE, Barnafo EK, Rausch KM, Tolia NH, Duffy PE. iScience 25 104739 (2022)
  144. Rational development of a human antibody cocktail that deploys multiple functions to confer Pan-SARS-CoVs protection. Yao H, Sun Y, Deng YQ, Wang N, Tan Y, Zhang NN, Li XF, Kong C, Xu YP, Chen Q, Cao TS, Zhao H, Yan X, Cao L, Lv Z, Zhu D, Feng R, Wu N, Zhang W, Hu Y, Chen K, Zhang RR, Lv Q, Sun S, Zhou Y, Yan R, Yang G, Sun X, Liu C, Lu X, Cheng L, Qiu H, Huang XY, Weng T, Shi D, Jiang W, Shao J, Wang L, Zhang J, Jiang T, Lang G, Qin CF, Li L, Wang X. Cell Res 31 25-36 (2021)
  145. Recombinant Antigens Based on Non-Glycosylated Regions from RBD SARS-CoV-2 as Potential Vaccine Candidates against COVID-19. Núñez-Muñoz L, Marcelino-Pérez G, Calderón-Pérez B, Pérez-Saldívar M, Acosta-Virgen K, González-Conchillos H, Vargas-Hernández B, Olivares-Martínez A, Ruiz-Medrano R, Roa-Velázquez D, Morales-Ríos E, Ramos-Flores J, Torres-Franco G, Peláez-González D, Fernández-Hernández J, Espinosa-Cantellano M, Tapia-Sidas D, Ramírez-Pool JA, Padilla-Viveros A, Xoconostle-Cázares B. Vaccines (Basel) 9 928 (2021)
  146. Role of Neuroimaging in COVID 19 Infection-A Retrospective Study. Kalekar T, Thakker V, Bansal A. J Radiol Nurs 40 370-376 (2021)
  147. Serological Screening for Coronavirus Infections in Cats. Zhao S, Li W, Schuurman N, van Kuppeveld F, Bosch BJ, Egberink H. Viruses 11 (2019)
  148. Spike protein mutational landscape in India during the complete lockdown phase: Could Muller's ratchet be a future game-changer for COVID-19? Banerjee R, Basak K, Ghosh A, Rajachandran V, Sureka K, Ganguly D, Chattopadhyay S. Infect Genet Evol 92 104874 (2021)
  149. Structure and epitope of a neutralizing monoclonal antibody that targets the stem helix of β coronaviruses. Deshpande A, Schormann N, Piepenbrink MS, Martinez Sobrido L, Kobie JJ, Walter MR. FEBS J 290 3422-3435 (2023)
  150. Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development. Loomis RJ, Stewart-Jones GBE, Tsybovsky Y, Caringal RT, Morabito KM, McLellan JS, Chamberlain AL, Nugent ST, Hutchinson GB, Kueltzo LA, Mascola JR, Graham BS. Front Immunol 11 842 (2020)
  151. Structures of the Hepaci-, Pegi-, and Pestiviruses envelope proteins suggest a novel membrane fusion mechanism. Oliver MR, Toon K, Lewis CB, Devlin S, Gifford RJ, Grove J. PLoS Biol 21 e3002174 (2023)
  152. Targeting virus-host interaction by novel pyrimidine derivative: an in silico approach towards discovery of potential drug against COVID-19. Rane JS, Pandey P, Chatterjee A, Khan R, Kumar A, Prakash A, Ray S. J Biomol Struct Dyn 1-11 (2020)
  153. Trimeric receptor-binding domain of SARS-CoV-2 acts as a potent inhibitor of ACE2 receptor-mediated viral entry. Basavarajappa SC, Liu AR, Bruchez A, Li Z, Suzart VG, Liu Z, Chen Y, Xiao TS, Buck M, Ramakrishnan P. iScience 25 104716 (2022)
  154. Valproate-coenzyme A conjugate blocks opening of receptor binding domains in the spike trimer of SARS-CoV-2 through an allosteric mechanism. Maschietto F, Qiu T, Wang J, Shi Y, Allen B, Lisi GP, Lolis E, Batista VS. Comput Struct Biotechnol J 21 1066-1076 (2023)
  155. [Human coronaviruses]. Segondy M. Rev Francoph Lab 2020 32-39 (2020)
  156. mRNA vaccines induce rapid antibody responses in mice. Gebre MS, Rauch S, Roth N, Gergen J, Yu J, Liu X, Cole AC, Mueller SO, Petsch B, Barouch DH. NPJ Vaccines 7 88 (2022)
  157. In silico analysis of ACE2 orthologues to predict animal host range with high susceptibility to SARS-CoV-2. Bouricha EM, Hakmi M, Akachar J, Belyamani L, Ibrahimi A. 3 Biotech 10 483 (2020)
  158. A Potent SARS-CoV-2 Neutralizing Human Monoclonal Antibody That Reduces Viral Burden and Disease Severity in Syrian Hamsters. Fagre AC, Manhard J, Adams R, Eckley M, Zhan S, Lewis J, Rocha SM, Woods C, Kuo K, Liao W, Li L, Corper A, Challa D, Mount E, Tumanut C, Tjalkens RB, Aboellail T, Fan X, Schountz T. Front Immunol 11 614256 (2020)
  159. A Rapid Assay for SARS-CoV-2 Neutralizing Antibodies That Is Insensitive to Antiretroviral Drugs. Huang D, Tran JT, Peng L, Yang L, Suhandynata RT, Hoffman MA, Zhao F, Song G, He WT, Limbo O, Callaghan S, Landais E, Andrabi R, Sok D, Jardine JG, Burton DR, Voss JE, Fitzgerald RL, Nemazee D. J Immunol 207 344-351 (2021)
  160. A comparative study of receptor interactions between SARS-CoV and SARS-CoV-2 from molecular modeling. Lai HTT, Nguyen LH, Phan AD, Kranjc A, Nguyen TT, Nguyen-Manh D. J Mol Model 28 305 (2022)
  161. A genetically engineered, stem-cell-derived cellular vaccine. Cooper A, Sidaway A, Chandrashekar A, Latta E, Chakraborty K, Yu J, McMahan K, Giffin V, Manickam C, Kroll K, Mosher M, Reeves RK, Gam R, Arthofer E, Choudhry M, Henley T, Barouch DH. Cell Rep Med 3 100843 (2022)
  162. Adjuvants Differentially Modulate the Immunogenicity of Lassa Virus Glycoprotein Subunits in Mice. To A, Lai CY, Wong TAS, Namekar M, Lieberman MM, Lehrer AT. Front Trop Dis 3 847598 (2022)
  163. An in silico approach unveils the potential of antiviral compounds in preclinical and clinical trials as SARS-CoV-2 omicron inhibitors. Bahadur Gurung A, Ajmal Ali M, Elshikh MS, Aref I, Amina M, Lee J. Saudi J Biol Sci 29 103297 (2022)
  164. Applying graph theory to protein structures: an Atlas of coiled coils. Heal JW, Bartlett GJ, Wood CW, Thomson AR, Woolfson DN. Bioinformatics 34 3316-3323 (2018)
  165. CXCL12 and CXCL13 Cytokine Serum Levels Are Associated with the Magnitude and the Quality of SARS-CoV-2 Humoral Responses. Noto A, Joo V, Mancarella A, Suffiotti M, Pellaton C, Fenwick C, Perreau M, Pantaleo G. Viruses 14 2665 (2022)
  166. Carbohydrate Ligands for COVID-19 Spike Proteins. Lee YK, Chang WC, Prakash E, Peng YJ, Tu ZJ, Lin CH, Hsu PH, Chang CF. Viruses 14 330 (2022)
  167. Characterization and immunogenicity of SARS-CoV-2 spike proteins with varied glycosylation. Deng T, Li T, Chen G, Zhu Y, Xu L, Lin Y, Sun H, Zhang H, Fang Q, Hong J, Wu D, Gao S, Li S, Wang Y, Zhang T, Chen Y, Yuan Q, Zheng Q, Yu H, Zhao Q, Zhang J, Li S, Xia N, Gu Y. Vaccine 40 6839-6848 (2022)
  168. Characterization of an Immunodominant Epitope in the Endodomain of the Coronavirus Membrane Protein. Dong H, Zhang X, Shi H, Chen J, Shi D, Zhu Y, Feng L. Viruses 8 (2016)
  169. Chromone-embedded peptidomimetics and furopyrimidines as highly potent SARS-CoV-2 infection inhibitors: docking and MD simulation study. Shakibay Senobari Z, Masoumian Hosseini M, Teimouri MB, Rezayan AH, Samarghandian S, Hekmat A. BMC Res Notes 16 224 (2023)
  170. Cocktail polysaccharides isolated from Ecklonia kurome against the SARS-CoV-2 infection. Zhang S, Pei R, Li M, Su H, Sun H, Ding Y, Su M, Huang C, Chen X, Du Z, Jin C, Zang Y, Li J, Xu Y, Chen X, Zhang B, Ding K. Carbohydr Polym 275 118779 (2022)
  171. Comparative Analysis of Nanomechanical Features of Coronavirus Spike Proteins and Correlation with Lethality and Infection Rate. Hu Y, Buehler MJ. Matter 4 265-275 (2021)
  172. Comparative Serological Study for the Prevalence of Anti-MERS Coronavirus Antibodies in High- and Low-Risk Groups in Qatar. Al Kahlout RA, Nasrallah GK, Farag EA, Wang L, Lattwein E, Müller MA, El Zowalaty ME, Al Romaihi HE, Graham BS, Al Thani AA, Yassine HM. J Immunol Res 2019 1386740 (2019)
  173. Comparative research on nucleocapsid and spike glycoprotein as the rapid immunodetection targets of COVID-19 and establishment of immunoassay strips. Liu D, Wu F, Cen Y, Ye L, Shi X, Huang Y, Fang S, Ma L. Mol Immunol 131 6-12 (2021)
  174. Computational repurposing approach for targeting the critical spike mutations in B.1.617.2 (delta), AY.1 (delta plus) and C.37 (lambda) SARS-CoV-2 variants using exhaustive structure-based virtual screening, molecular dynamic simulations and MM-PBSA methods. Ebrahimi M, Karami L, Alijanianzadeh M. Comput Biol Med 147 105709 (2022)
  175. Cross-reactive antibodies elicited to conserved epitopes on SARS-CoV-2 spike protein after infection and vaccination. Geanes ES, LeMaster C, Fraley ER, Khanal S, McLennan R, Grundberg E, Selvarangan R, Bradley T. Sci Rep 12 6496 (2022)
  176. Cryo-EM analysis of the HCoV-229E spike glycoprotein reveals dynamic prefusion conformational changes. Song X, Shi Y, Ding W, Niu T, Sun L, Tan Y, Chen Y, Shi J, Xiong Q, Huang X, Xiao S, Zhu Y, Cheng C, Fu ZF, Liu ZJ, Peng G. Nat Commun 12 141 (2021)
  177. Cryo-EM reveals binding of linoleic acid to SARS-CoV-2 spike glycoprotein, suggesting an antiviral treatment strategy. Toelzer C, Gupta K, Berger I, Schaffitzel C. Acta Crystallogr D Struct Biol 79 111-121 (2023)
  178. DNA-launched RNA replicon vaccines induce potent anti-SARS-CoV-2 immune responses in mice. Szurgot I, Hanke L, Sheward DJ, Vidakovics LP, Murrell B, McInerney GM, Liljeström P. Sci Rep 11 3125 (2021)
  179. Design and Assessment of a Novel In Silico Approach for Developing a Next-Generation Multi-Epitope Universal Vaccine Targeting Coronaviruses. Rasheed MA, Raza S, Alonazi WB, Ashraf MA, Navid MT, Aslam I, Iqbal MN, Rahman SU, Riaz MI. Microorganisms 11 2282 (2023)
  180. Design of a multi-epitope-based peptide vaccine against the S and N proteins of SARS-COV-2 using immunoinformatics approach. Rouzbahani AK, Kheirandish F, Hosseini SZ. Egypt J Med Hum Genet 23 16 (2022)
  181. Diagnostic performance and clinical feasibility of a novel one-step RT-qPCR assay for simultaneous detection of multiple severe acute respiratory syndrome coronaviruses. Le TB, Kim HK, Ahn MJ, Zanin M, Lo VT, Ling S, Jiang Z, Kang JA, Bae PK, Kim YS, Kim S, Wong SS, Jeong DG, Yoon SW. Arch Virol 167 871-879 (2022)
  182. Disulfide stabilization reveals conserved dynamic features between SARS-CoV-1 and SARS-CoV-2 spikes. Zhang X, Li Z, Zhang Y, Liu Y, Wang J, Liu B, Chen Q, Wang Q, Fu L, Wang P, Zhong X, Jin L, Yan Q, Chen L, He J, Zhao J, Xiong X. Life Sci Alliance 6 e202201796 (2023)
  183. Dramatic Differences between the Structural Susceptibility of the S1 Pre- and S2 Postfusion States of the SARS-CoV-2 Spike Protein to External Electric Fields Revealed by Molecular Dynamics Simulations. Lipskij A, Arbeitman C, Rojas P, Ojeda-May P, Garcia ME. Viruses 15 2405 (2023)
  184. Druggable targets from coronaviruses for designing new antiviral drugs. Silva LR, da Silva Santos-Júnior PF, de Andrade Brandão J, Anderson L, Bassi ÊJ, Xavier de Araújo-Júnior J, Cardoso SH, da Silva-Júnior EF. Bioorg Med Chem 28 115745 (2020)
  185. Dynamic Network Modeling of Allosteric Interactions and Communication Pathways in the SARS-CoV-2 Spike Trimer Mutants: Differential Modulation of Conformational Landscapes and Signal Transmission via Cascades of Regulatory Switches. Verkhivker GM, Di Paola L. J Phys Chem B 125 850-873 (2021)
  186. Effect of an Inhibitor on the ACE2-Receptor-Binding Domain of SARS-CoV-2. Sharma G, Song LF, Merz KM. J Chem Inf Model (2022)
  187. Efficient virus detection utilizing chitin-immobilized nanobodies synthesized in Ustilago maydis. Philipp M, Müller L, Andrée M, Hussnaetter KP, Schaal H, Feldbrügge M, Schipper K. J Biotechnol 366 72-84 (2023)
  188. Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein. Mori T, Jung J, Kobayashi C, Dokainish HM, Re S, Sugita Y. Biophys J (2021)
  189. Genetic characteristics of human coronavirus HKU1 in mainland China during 2018. Chen X, Zhu Y, Li Q, Lu G, Li C, Jin R, Li L, Xu B, Gao L, Yin J, Xie Z. Arch Virol 167 2173-2180 (2022)
  190. Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH. Mi D, Ou X, Li P, Peng G, Liu Y, Guo R, Mu Z, Li F, Holmes K, Qian Z. J. Virol. 93 (2019)
  191. Glycosylation and Serological Reactivity of an Expression-enhanced SARS-CoV-2 Viral Spike Mimetic. Chawla H, Jossi SE, Faustini SE, Samsudin F, Allen JD, Watanabe Y, Newby ML, Marcial-Juárez E, Lamerton RE, McLellan JS, Bond PJ, Richter AG, Cunningham AF, Crispin M. J Mol Biol 434 167332 (2022)
  192. Identification of Novel Linear Epitopes Located in the Infectious Bronchitis Virus Spike S2 Region. Andoh K, Ashikaga K, Suenaga K, Endo S, Yamazaki K. Avian Dis. 62 210-217 (2018)
  193. Immunogenicity mechanism of mRNA vaccines and their limitations in promoting adaptive protection against SARS-CoV-2. Salleh MZ, Norazmi MN, Deris ZZ. PeerJ 10 e13083 (2022)
  194. In-silico nucleotide and protein analyses of S-gene region in selected zoonotic coronaviruses reveal conserved domains and evolutionary emergence with trajectory course of viral entry from SARS-CoV-2 genomic data. Obajuluwa AO, Okiki PA, Obajuluwa TM, Afolabi OB. Pan Afr Med J 37 285 (2020)
  195. In-silico study on perovskites application in capturing and distorting coronavirus. Khedri M, Zandi P, Ghasemy E, Nikzad A, Maleki R, Rezaei N. Inform Med Unlocked 26 100755 (2021)
  196. Induction of Th1 and Th2 in the protection against SARS-CoV-2 through mucosal delivery of an adenovirus vaccine expressing an engineered spike protein. Chung NH, Chen YC, Yang SJ, Lin YC, Dou HY, Hui-Ching Wang L, Liao CL, Chow YH. Vaccine 40 574-586 (2022)
  197. Inhibitory activities of alginate phosphate and sulfate derivatives against SARS-CoV-2 in vitro. Yang C, Li D, Wang S, Xu M, Wang D, Li X, Xu X, Li C. Int J Biol Macromol 227 316-328 (2023)
  198. Kallikrein 13 serves as a priming protease during infection by the human coronavirus HKU1. Milewska A, Falkowski K, Kulczycka M, Bielecka E, Naskalska A, Mak P, Lesner A, Ochman M, Urlik M, Diamandis E, Prassas I, Potempa J, Kantyka T, Pyrc K. Sci Signal 13 (2020)
  199. Lipid acyl chain protrusion induced by the influenza virus hemagglutinin fusion peptide detected by NMR paramagnetic relaxation enhancement. Zhang Y, Ghosh U, Xie L, Holmes D, Severin KG, Weliky DP. Biophys Chem 299 107028 (2023)
  200. Methods to Measure Antibody Neutralization of Live Human Coronavirus OC43. Boonyaratanakornkit J, Sholukh AM, Gray M, Bossard EL, Ford ES, Corbett KS, Corey L, Taylor JJ. Viruses 13 2075 (2021)
  201. Modified DNA vaccine confers improved humoral immune response and effective virus protection against SARS-CoV-2 delta variant. Hayashi H, Sun J, Yanagida Y, Otera T, Sasai M, Chang CY, Tai JA, Nishikawa T, Yamashita K, Sakaguchi N, Yoshida S, Baba S, Shimamura M, Okamoto S, Amaishi Y, Chono H, Mineno J, Rakugi H, Morishita R, Yamamoto M, Nakagami H. Sci Rep 12 20923 (2022)
  202. Molecular characterization and sequecing analysis of SARS-CoV-2 genome in Minas Gerais, Brazil. Ferreira GM, Claro IM, Grosche VR, Cândido D, José DP, Rocha EC, de Moura Coletti T, Manuli ER, Gaburo N, Faria NR, Sabino EC, de Jesus JG, Jardim ACG. Biologicals 80 43-52 (2022)
  203. N-linked glycoproteins and host proteases are involved in swine acute diarrhea syndrome coronavirus entry. Chen Y, Liu X, Zheng JN, Yang LJ, Luo Y, Yao YL, Liu MQ, Xie TT, Lin HF, He YT, Zhou P, Hu B, Tian RJ, Shi ZL. J Virol e0091623 (2023)
  204. Nanomechanical analysis of SARS-CoV-2 variants and predictions of infectiousness and lethality. Hu Y, Buehler MJ. Soft Matter 18 5833-5842 (2022)
  205. Nanoparticle display of prefusion coronavirus spike elicits S1-focused cross-reactive antibody response against diverse coronavirus subgenera. Hutchinson GB, Abiona OM, Ziwawo CT, Werner AP, Ellis D, Tsybovsky Y, Leist SR, Palandjian C, West A, Fritch EJ, Wang N, Wrapp D, Boyoglu-Barnum S, Ueda G, Baker D, Kanekiyo M, McLellan JS, Baric RS, King NP, Graham BS, Corbett-Helaire KS. Nat Commun 14 6195 (2023)
  206. Network analysis uncovers the communication structure of SARS-CoV-2 spike protein identifying sites for immunogen design. Manrique PD, Chakraborty S, Henderson R, Edwards RJ, Mansbach R, Nguyen K, Stalls V, Saunders C, Mansouri K, Acharya P, Korber B, Gnanakaran S. iScience 26 105855 (2023)
  207. Potential of antibody pair targeting conserved antigenic sites in diagnosis of SARS-CoV-2 variants infection. Wang S, Wu Y, Wang Y, Chen Z, Ying D, Lin X, Liu C, Lin M, Zhang J, Zhu Y, Guo S, Shang H, Chen X, Qiang H, Yin Y, Tang Z, Zheng Z, Xia N. J Virol Methods 309 114597 (2022)
  208. Proteases facilitate the endosomal escape of porcine epidemic diarrhea virus during entry into host cells. Oh C, Kim Y, Chang KO. Virus Res 272 197730 (2019)
  209. Rapid identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display. Tanaka S, Olson CA, Barnes CO, Higashide W, Gonzalez M, Taft J, Richardson A, Martin-Fernandez M, Bogunovic D, Gnanapragasam PNP, Bjorkman PJ, Spilman P, Niazi K, Rabizadeh S, Soon-Shiong P. Cell Rep 38 110348 (2022)
  210. Recombinant Infectious Bronchitis Viruses Expressing Chimeric Spike Glycoproteins Induce Partial Protective Immunity against Homologous Challenge despite Limited Replication In Vivo. Ellis S, Keep S, Britton P, de Wit S, Bickerton E, Vervelde L. J. Virol. 92 (2018)
  211. Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein. Behloul N, Baha S, Shi R, Meng J. Virus Res 286 198058 (2020)
  212. Rotation-Activated and Cooperative Zipping Characterize Class I Viral Fusion Protein Dynamics. Eddy NR, Onuchic JN. Biophys. J. 114 1878-1888 (2018)
  213. SARS-CoV-2 Spike N-Terminal Domain Engages 9-O-Acetylated α2-8-Linked Sialic Acids. Tomris I, Unione L, Nguyen L, Zaree P, Bouwman KM, Liu L, Li Z, Fok JA, Ríos Carrasco M, van der Woude R, Kimpel ALM, Linthorst MW, Kilavuzoglu SE, Verpalen ECJM, Caniels TG, Sanders RW, Heesters BA, Pieters RJ, Jiménez-Barbero J, Klassen JS, Boons GJ, de Vries RP. ACS Chem Biol 18 1180-1191 (2023)
  214. SP-A binding to the SARS-CoV-2 spike protein using hybrid quantum and classical in silico modeling and molecular pruning by Quantum Approximate Optimization Algorithm (QAOA) Based MaxCut with ZDOCK. Aramyan S, McGregor K, Sandeep S, Haczku A. Front Immunol 13 945317 (2022)
  215. Selection and Characterization of Monoclonal Antibodies Targeting Middle East Respiratory Syndrome Coronavirus through a Human Synthetic Fab Phage Display Library Panning. Kim Y, Lee H, Park K, Park S, Lim JH, So MK, Woo HM, Ko H, Lee JM, Lim SH, Ko BJ, Park YS, Choi SY, Song DH, Lee JY, Kim SS, Kim DY. Antibodies (Basel) 8 (2019)
  216. Self-derived peptides from the SARS-CoV-2 spike glycoprotein disrupting shaping and stability of the homotrimer unit. Padariya M, Daniels A, Tait-Burkard C, Hupp T, Kalathiya U. Biomed Pharmacother 151 113190 (2022)
  217. Stabilized recombinant SARS-CoV-2 spike antigen enhances vaccine immunogenicity and protective capacity. Meyer Zu Natrup C, Tscherne A, Dahlke C, Ciurkiewicz M, Shin DL, Fathi A, Rohde C, Kalodimou G, Halwe S, Limpinsel L, Schwarz JH, Klug M, Esen M, Schneiderhan-Marra N, Dulovic A, Kupke A, Brosinski K, Clever S, Schünemann LM, Beythien G, Armando F, Mayer L, Weskamm ML, Jany S, Freudenstein A, Tuchel T, Baumgärtner W, Kremsner P, Fendel R, Addo MM, Becker S, Sutter G, Volz A. J Clin Invest 132 e159895 (2022)
  218. Stress adaptation signature into the functional units of spike, envelope, membrane protein and ssRNA of SARS-CoV-2. Sarkar A, Panja AS. Mol Biol Res Commun 11 155-166 (2022)
  219. Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD. Wang N, Rosen O, Wang L, Turner HL, Stevens LJ, Corbett KS, Bowman CA, Pallesen J, Shi W, Zhang Y, Leung K, Kirchdoerfer RN, Becker MM, Denison MR, Chappell JD, Ward AB, Graham BS, McLellan JS. Cell Rep 28 3395-3405.e6 (2019)
  220. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Zhou H, Chen Y, Zhang S, Niu P, Qin K, Jia W, Huang B, Zhang S, Lan J, Zhang L, Tan W, Wang X. Nat Commun 10 3068 (2019)
  221. Subnanometer structure of an enveloped virus fusion complex on viral surface reveals new entry mechanisms. Marcink TC, Zipursky G, Cheng W, Stearns K, Stenglein S, Golub K, Cohen F, Bovier F, Pfalmer D, Greninger AL, Porotto M, des Georges A, Moscona A. Sci Adv 9 eade2727 (2023)
  222. Systematic Investigation of SARS-CoV-2 Receptor Protein Distribution along Viral Entry Routes in Humans. Bräutigam K, Reinhard S, Galván JA, Wartenberg M, Hewer E, Schürch CM. Respiration 101 610-618 (2022)
  223. Systematic analysis and comparison of O-glycosylation of five recombinant spike proteins in β-coronaviruses. Dong X, Li X, Chen C, Zhang X, Liang X. Anal Chim Acta 1230 340394 (2022)
  224. THE GORDON WILSON LECTURE: RAPID COVID-19 VACCINE DEVELOPMENT AND THE FUTURE OF VACCINOLOGY. Graham BS. Trans Am Clin Climatol Assoc 133 103-105 (2023)
  225. TMPRSS2 is a functional receptor for human coronavirus HKU1. Saunders N, Fernandez I, Planchais C, Michel V, Rajah MM, Baquero Salazar E, Postal J, Porrot F, Guivel-Benhassine F, Blanc C, Chauveau-Le Friec G, Martin A, Grzelak L, Oktavia RM, Meola A, Ahouzi O, Hoover-Watson H, Prot M, Delaune D, Cornelissen M, Deijs M, Meriaux V, Mouquet H, Simon-Lorière E, van der Hoek L, Lafaye P, Rey F, Buchrieser J, Schwartz O. Nature 624 207-214 (2023)
  226. The "LLQY" Motif on SARS-CoV-2 Spike Protein Affects S Incorporation into Virus Particles. Du S, Xu W, Wang Y, Li L, Hao P, Tian M, Wang M, Li T, Wu S, Liu Q, Bai J, Qu X, Jin N, Zhou B, Liao M, Li C. J Virol 96 e0189721 (2022)
  227. The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation. Wrapp D, McLellan JS. J. Virol. 93 (2019)
  228. The COVID-19 mRNA Vaccines and the Pandemic: Do They Represent the Beginning of the End or the End of the Beginning? Jhaveri R. Clin Ther (2021)
  229. The SARS-CoV-2 spike residues 616/644 and 1138/1169 delineate two antibody epitopes in COVID-19 mRNA COMINARTY vaccine (Pfizer/BioNTech). Andries J, Viranaicken W, Cordonin C, Herrscher C, Planesse C, Roquebert B, Lagrange-Xelot M, El-Kalamouni C, Meilhac O, Mavingui P, Couret D, Gadea G, Despres P. Sci Rep 12 5999 (2022)
  230. The biogenesis of SARS-CoV-2 spike glycoprotein: multiple targets for host-directed antiviral therapy. Santopolo S, Riccio A, Santoro MG. Biochem Biophys Res Commun 538 80-87 (2021)
  231. The human coronavirus HCoV-229E S-protein structure and receptor binding. Li Z, Tomlinson AC, Wong AH, Zhou D, Desforges M, Talbot PJ, Benlekbir S, Rubinstein JL, Rini JM. Elife 8 (2019)
  232. The structure of a novel antibody against the spike protein inhibits Middle East respiratory syndrome coronavirus infections. Jang TH, Park WJ, Lee H, Woo HM, Lee SY, Kim KC, Kim SS, Hong E, Song J, Lee JY. Sci Rep 12 1260 (2022)
  233. Two Consecutive Prolines in the Fusion Peptide of Murine β-Coronavirus Spike Protein Predominantly Determine Fusogenicity and May Be Essential but Not Sufficient to Cause Demyelination. Safiriyu AA, Singh M, Kishore A, Mulchandani V, Maity D, Behera A, Sinha B, Pal D, Das Sarma J. Viruses 14 834 (2022)
  234. US Taxpayers Heavily Funded the Discovery of COVID-19 Vaccines. Lalani HS, Avorn J, Kesselheim AS. Clin Pharmacol Ther 111 542-544 (2022)
  235. Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants. Onigbinde S, Reyes CDG, Fowowe M, Daramola O, Atashi M, Bennett AI, Mechref Y. Biomolecules 13 1467 (2023)
  236. Viral Prototypes for Pandemic Preparedness: The Road Ahead. Morabito KM, Cassetti MC, DeRocco AJ, Deschamps AM, Pierson TC. J Infect Dis 228 S460-S464 (2023)
  237. hACE2-Induced Allosteric Activation in SARS-CoV versus SARS-CoV-2 Spike Assemblies Revealed by Structural Dynamics. Chen C, Zhu R, Hodge EA, Díaz-Salinas MA, Nguyen A, Munro JB, Lee KK. ACS Infect Dis 9 1180-1189 (2023)