5ijc Citations

TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS.

Proc Natl Acad Sci U S A 113 E884-93 (2016)
Related entries: 5ijb, 5ijd

Cited: 79 times
EuropePMC logo PMID: 26831104

Abstract

Structurally disparate molecules reportedly engage and activate Toll-like receptor (TLR) 4 and other TLRs, yet the interactions that mediate binding and activation by dissimilar ligands remain unknown. We describe Neoseptins, chemically synthesized peptidomimetics that bear no structural similarity to the established TLR4 ligand, lipopolysaccharide (LPS), but productively engage the mouse TLR4 (mTLR4)/myeloid differentiation factor 2 (MD-2) complex. Neoseptin-3 activates mTLR4/MD-2 independently of CD14 and triggers canonical myeloid differentiation primary response gene 88 (MyD88)- and Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing IFN-beta (TRIF)-dependent signaling. The crystal structure mTLR4/MD-2/Neoseptin-3 at 2.57-Å resolution reveals that Neoseptin-3 binds as an asymmetrical dimer within the hydrophobic pocket of MD-2, inducing an active receptor complex similar to that induced by lipid A. However, Neoseptin-3 and lipid A form dissimilar molecular contacts to achieve receptor activation; hence strong TLR4/MD-2 agonists need not mimic LPS.

Reviews - 5ijc mentioned but not cited (2)

  1. Structural and functional understanding of the toll-like receptors. Asami J, Shimizu T. Protein Sci 30 761-772 (2021)
  2. Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Ignacio BJ, Albin TJ, Esser-Kahn AP, Verdoes M. Bioconjug Chem 29 587-603 (2018)

Articles - 5ijc mentioned but not cited (7)

  1. Deciphering Molecular Mechanism of the Neuropharmacological Action of Fucosterol through Integrated System Pharmacology and In Silico Analysis. Hannan MA, Dash R, Sohag AAM, Moon IS. Mar Drugs 17 E639 (2019)
  2. A Novel Class of Small Molecule Agonists with Preference for Human over Mouse TLR4 Activation. Marshall JD, Heeke DS, Rao E, Maynard SK, Hornigold D, McCrae C, Fraser N, Tovchigrechko A, Yu L, Williams N, King S, Cooper ME, Hajjar AM, Woo JC. PLoS One 11 e0164632 (2016)
  3. Key residues in TLR4-MD2 tetramer formation identified by free energy simulations. Tafazzol A, Duan Y. PLoS Comput Biol 15 e1007228 (2019)
  4. Sulfatides are endogenous ligands for the TLR4-MD-2 complex. Su L, Athamna M, Wang Y, Wang J, Freudenberg M, Yue T, Wang J, Moresco EMY, He H, Zor T, Beutler B. Proc Natl Acad Sci U S A 118 e2105316118 (2021)
  5. Combination Therapy of Ledipasvir and Itraconazole in the Treatment of COVID-19 Patients Coinfected with Black Fungus: An In Silico Statement. Saha S, Yeom GS, Nimse SB, Pal D. Biomed Res Int 2022 5904261 (2022)
  6. Correction for Wang et al., TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS. Proc Natl Acad Sci U S A 118 e2106360118 (2021)
  7. The Identification of a Novel Spider Toxin Peptide, Lycotoxin-Pa2a, with Antibacterial and Anti-Inflammatory Activities. Shin MK, Hwang IW, Jang BY, Bu KB, Han DH, Lee SH, Oh JW, Yoo JS, Sung JS. Antibiotics (Basel) 12 1708 (2023)


Reviews citing this publication (25)

  1. Modulators of microglial activation and polarization after intracerebral haemorrhage. Lan X, Han X, Li Q, Yang QW, Wang J. Nat Rev Neurol 13 420-433 (2017)
  2. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A. Front Cell Neurosci 12 488 (2018)
  3. Recent clinical trends in Toll-like receptor targeting therapeutics. Anwar MA, Shah M, Kim J, Choi S. Med Res Rev 39 1053-1090 (2019)
  4. Toll-like receptor 4 in acute viral infection: Too much of a good thing. Olejnik J, Hume AJ, Mühlberger E. PLoS Pathog 14 e1007390 (2018)
  5. Toll-like receptors and their role in persistent pain. Lacagnina MJ, Watkins LR, Grace PM. Pharmacol Ther 184 145-158 (2018)
  6. The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like Receptor 4 (TLR4) Signalling. Cochet F, Peri F. Int J Mol Sci 18 E2318 (2017)
  7. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. Front Immunol 11 622614 (2020)
  8. The science of vaccine adjuvants: advances in TLR4 ligand adjuvants. Reed SG, Hsu FC, Carter D, Orr MT. Curr Opin Immunol 41 85-90 (2016)
  9. Dietary fat composition: replacement of saturated fatty acids with PUFA as a public health strategy, with an emphasis on α-linolenic acid. Lenighan YM, McNulty BA, Roche HM. Proc Nutr Soc 78 234-245 (2019)
  10. TLR-4 Signaling vs. Immune Checkpoints, miRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme-Future Perspectives. Litak J, Grochowski C, Litak J, Osuchowska I, Gosik K, Radzikowska E, Kamieniak P, Rolinski J. Int J Mol Sci 21 E3114 (2020)
  11. Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods. Javaid N, Yasmeen F, Choi S. Pharmaceutics 11 E441 (2019)
  12. Balancing Inflammation: Computational Design of Small-Molecule Toll-like Receptor Modulators. Murgueitio MS, Rakers C, Frank A, Wolber G. Trends Pharmacol Sci 38 155-168 (2017)
  13. Nanomedicine-mediated alteration of the pharmacokinetic profile of small molecule cancer immunotherapeutics. Van Herck S, De Geest BG. Acta Pharmacol Sin 41 881-894 (2020)
  14. Contributions and Future Directions for Structural Biology in the Study of Allergens. Mueller GA. Int Arch Allergy Immunol 174 57-66 (2017)
  15. GABAAR α2-activated neuroimmune signal controls binge drinking and impulsivity through regulation of the CCL2/CX3CL1 balance. Aurelian L, Balan I. Psychopharmacology (Berl) 236 3023-3043 (2019)
  16. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. J Nanobiotechnology 20 380 (2022)
  17. Innate immune receptors in solid organ transplantation. Georgel P. Hum Immunol 77 1071-1075 (2016)
  18. Review: Current trends, challenges, and success stories in adjuvant research. Singleton KL, Joffe A, Leitner WW. Front Immunol 14 1105655 (2023)
  19. Role of TLRs in HIV-1 Infection and Potential of TLR Agonists in HIV-1 Vaccine Development and Treatment Strategies. Rozman M, Zidovec-Lepej S, Jambrosic K, Babić M, Drmić Hofman I. Pathogens 12 92 (2023)
  20. Therapeutic Targeting of Innate Immune Receptors Against SARS-CoV-2 Infection. Farooq M, Khan AW, Ahmad B, Kim MS, Choi S. Front Pharmacol 13 915565 (2022)
  21. Therapeutic Targeting of TLR4 for Inflammation, Infection, and Cancer: A Perspective for Disaccharide Lipid A Mimetics. Heine H, Zamyatina A. Pharmaceuticals (Basel) 16 23 (2022)
  22. Mechanism and Regulation of Microglia Polarization in Intracerebral Hemorrhage. Guo Y, Dai W, Zheng Y, Qiao W, Chen W, Peng L, Zhou H, Zhao T, Liu H, Zheng F, Sun P. Molecules 27 7080 (2022)
  23. Small molecule modulators of immune pattern recognition receptors. Tsukidate T, Hespen CW, Hang HC. RSC Chem Biol 4 1014-1036 (2023)
  24. The dangerous liaisons in innate immunity involving recombinant proteins and endotoxins: Examples from the literature and the Leptospira field. Bonhomme D, Cavaillon JM, Werts C. J Biol Chem 300 105506 (2023)
  25. The repertoire of protein-sulfatide interactions reveal distinct modes of sulfatide recognition. Capelluto DGS. Front Mol Biosci 9 1080161 (2022)

Articles citing this publication (45)

  1. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Velová H, Gutowska-Ding MW, Burt DW, Vinkler M. Mol Biol Evol 35 2170-2184 (2018)
  2. Structural Basis of TLR2/TLR1 Activation by the Synthetic Agonist Diprovocim. Su L, Wang Y, Wang J, Mifune Y, Morin MD, Jones BT, Moresco EMY, Boger DL, Beutler B, Zhang H. J Med Chem 62 2938-2949 (2019)
  3. TLR4/MD2 specific peptides stalled in vivo LPS-induced immune exacerbation. Park S, Shin HJ, Shah M, Cho HY, Anwar MA, Achek A, Kwon HK, Lee B, Yoo TH, Choi S. Biomaterials 126 49-60 (2017)
  4. TLR4 signaling in VTA dopaminergic neurons regulates impulsivity through tyrosine hydroxylase modulation. Aurelian L, Warnock KT, Balan I, Puche A, June H. Transl Psychiatry 6 e815 (2016)
  5. In silico analysis and in vivo assessment of a novel epitope-based vaccine candidate against uropathogenic Escherichia coli. Hasanzadeh S, Habibi M, Shokrgozar MA, Ahangari Cohan R, Ahmadi K, Asadi Karam MR, Bouzari S. Sci Rep 10 16258 (2020)
  6. Discovery and Structure-Activity Relationships of the Neoseptins: A New Class of Toll-like Receptor-4 (TLR4) Agonists. Morin MD, Wang Y, Jones BT, Su L, Surakattula MM, Berger M, Huang H, Beutler EK, Zhang H, Beutler B, Boger DL. J Med Chem 59 4812-4830 (2016)
  7. Particulate β-glucans synergistically activate TLR4 and Dectin-1 in human dendritic cells. Sahasrabudhe NM, Dokter-Fokkens J, de Vos P. Mol Nutr Food Res 60 2514-2522 (2016)
  8. A structural insight into the negative effects of opioids in analgesia by modulating the TLR4 signaling: An in silico approach. Shah M, Anwar MA, Yesudhas D, Krishnan J, Choi S. Sci Rep 6 39271 (2016)
  9. Comparison of adjuvants to optimize influenza neutralizing antibody responses. Rudicell RS, Garinot M, Kanekiyo M, Kamp HD, Swanson K, Chou TH, Dai S, Bedel O, Simard D, Gillespie RA, Yang K, Reardon M, Avila LZ, Besev M, Dhal PK, Dharanipragada R, Zheng L, Duan X, Dinapoli J, Vogel TU, Kleanthous H, Mascola JR, Graham BS, Haensler J, Wei CJ, Nabel GJ. Vaccine 37 6208-6220 (2019)
  10. Homeostatic and pathogenic roles of GM3 ganglioside molecular species in TLR4 signaling in obesity. Kanoh H, Nitta T, Go S, Inamori KI, Veillon L, Nihei W, Fujii M, Kabayama K, Shimoyama A, Fukase K, Ohto U, Shimizu T, Watanabe T, Shindo H, Aoki S, Sato K, Nagasaki M, Yatomi Y, Komura N, Ando H, Ishida H, Kiso M, Natori Y, Yoshimura Y, Zonca A, Cattaneo A, Letizia M, Ciampa M, Mauri L, Prinetti A, Sonnino S, Suzuki A, Inokuchi JI. EMBO J 39 e101732 (2020)
  11. Immunogenicity Testing of Lipidoids In Vitro and In Silico: Modulating Lipidoid-Mediated TLR4 Activation by Nanoparticle Design. de Groot AM, Thanki K, Gangloff M, Falkenberg E, Zeng X, van Bijnen DCJ, van Eden W, Franzyk H, Nielsen HM, Broere F, Gay NJ, Foged C, Sijts AJAM. Mol Ther Nucleic Acids 11 159-169 (2018)
  12. Diprovocims: A New and Exceptionally Potent Class of Toll-like Receptor Agonists. Morin MD, Wang Y, Jones BT, Mifune Y, Su L, Shi H, Moresco EMY, Zhang H, Beutler B, Boger DL. J Am Chem Soc 140 14440-14454 (2018)
  13. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity. Balan I, Warnock KT, Puche A, Gondre-Lewis MC, Aurelian L. Brain Behav Immun 69 139-153 (2018)
  14. Mechanisms Mediating High-Molecular-Weight Hyaluronan-Induced Antihyperalgesia. Bonet IJM, Araldi D, Khomula EV, Bogen O, Green PG, Levine JD. J Neurosci 40 6477-6488 (2020)
  15. Synthetic glycan-based TLR4 agonists targeting caspase-4/11 for the development of adjuvants and immunotherapeutics. Adanitsch F, Shi J, Shao F, Beyaert R, Heine H, Zamyatina A. Chem Sci 9 3957-3963 (2018)
  16. Tannic acid prevents macrophage-induced pro-fibrotic response in lung epithelial cells via suppressing TLR4-mediated macrophage polarization. Sivanantham A, Pattarayan D, Rajasekar N, Kannan A, Loganathan L, Bethunaickan R, Mahapatra SK, Palanichamy R, Muthusamy K, Rajasekaran S. Inflamm Res 68 1011-1024 (2019)
  17. Structure-Activity Relationship Studies of Pyrimido[5,4-b]indoles as Selective Toll-Like Receptor 4 Ligands. Chan M, Kakitsubata Y, Hayashi T, Ahmadi A, Yao S, Shukla NM, Oyama SY, Baba A, Nguyen B, Corr M, Suda Y, Carson DA, Cottam HB, Wakao M. J Med Chem 60 9142-9161 (2017)
  18. TLR4 signaling improves PD-1 blockade therapy during chronic viral infection. Wang Y, Chung YR, Eitzinger S, Palacio N, Gregory S, Bhattacharyya M, Penaloza-MacMaster P. PLoS Pathog 15 e1007583 (2019)
  19. Taurine ameliorates thioacetamide induced liver fibrosis in rats via modulation of toll like receptor 4/nuclear factor kappa B signaling pathway. Younis NS, Ghanim AMH, Elmorsy MA, Metwaly HA. Sci Rep 11 12296 (2021)
  20. The GABAA Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse. Balan I, Warnock KT, Puche A, Gondre-Lewis MC, June H, Aurelian L. Brain Sci 8 E72 (2018)
  21. A mouse model of human TLR4 D299G/T399I SNPs reveals mechanisms of altered LPS and pathogen responses. Richard K, Piepenbrink KH, Shirey KA, Gopalakrishnan A, Nallar S, Prantner DJ, Perkins DJ, Lai W, Vlk A, Toshchakov VY, Feng C, Fanaroff R, Medvedev AE, Blanco JCG, Vogel SN. J Exp Med 218 e20200675 (2021)
  22. Phosphatidylinositol-4-kinase IIα licenses phagosomes for TLR4 signaling and MHC-II presentation in dendritic cells. López-Haber C, Levin-Konigsberg R, Zhu Y, Bi-Karchin J, Balla T, Grinstein S, Marks MS, Mantegazza AR. Proc Natl Acad Sci U S A 117 28251-28262 (2020)
  23. An Immunoinformatics Approach for SARS-CoV-2 in Latam Populations and Multi-Epitope Vaccine Candidate Directed towards the World's Population. Cuspoca AF, Díaz LL, Acosta AF, Peñaloza MK, Méndez YR, Clavijo DC, Yosa Reyes J. Vaccines (Basel) 9 581 (2021)
  24. Computationally Designed Bispecific MD2/CD14 Binding Peptides Show TLR4 Agonist Activity. Michaeli A, Mezan S, Kühbacher A, Finkelmeier D, Elias M, Zatsepin M, Reed SG, Duthie MS, Rupp S, Lerner I, Burger-Kentischer A. J Immunol 201 3383-3391 (2018)
  25. Immunological design of commensal communities to treat intestinal infection and inflammation. Brown RL, Larkinson MLY, Clarke TB. PLoS Pathog 17 e1009191 (2021)
  26. Synergy between 15-lipoxygenase and secreted PLA2 promotes inflammation by formation of TLR4 agonists from extracellular vesicles. Ha VT, Lainšček D, Gesslbauer B, Jarc-Jovičić E, Hyötyläinen T, Ilc N, Lakota K, Tomšič M, van de Loo FAJ, Bochkov V, Petan T, Jerala R, Manček-Keber M. Proc Natl Acad Sci U S A 117 25679-25689 (2020)
  27. Pathogenesis of Borrelia burgdorferi and Babesia microti in TLR4-Competent and TLR4-dysfunctional C3H mice. Akoolo L, Djokic V, Rocha SC, Parveen N. Cell Microbiol 23 e13350 (2021)
  28. Editorial Recent Advances and Perspectives in Small-molecule TLR Ligands and Their Modulators. Shukla NM, Chan M, Hayashi T, Carson DA, Cottam HB. ACS Med Chem Lett 9 1156-1159 (2018)
  29. Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Heine H, Adanitsch F, Peternelj TT, Haegman M, Kasper C, Ittig S, Beyaert R, Jerala R, Zamyatina A. Front Immunol 12 631797 (2021)
  30. Atorvastatin protected from paraquat-induced cytotoxicity in alveolar macrophages via down-regulation of TLR-4. Alizadeh-Tabrizi N, Malekinejad H, Varasteh S, Cheraghi H. Environ Toxicol Pharmacol 49 8-13 (2017)
  31. Funiculosin variants and phosphorylated derivatives promote innate immune responses via the Toll-like receptor 4/myeloid differentiation factor-2 complex. Okamoto N, Mizote K, Honda H, Saeki A, Watanabe Y, Yamaguchi-Miyamoto T, Fukui R, Tanimura N, Motoi Y, Akashi-Takamura S, Kato T, Fujishita S, Kimura T, Ohto U, Shimizu T, Hirokawa T, Miyake K, Fukase K, Fujimoto Y, Nagai Y, Takatsu K. J Biol Chem 292 15378-15394 (2017)
  32. Soluble MD-2 and Heme in Sickle Cell Disease Plasma Promote Pro-Inflammatory Signaling in Endothelial Cells. Zhang P, Nguyen J, Abdulla F, Nelson AT, Beckman JD, Vercellotti GM, Belcher JD. Front Immunol 12 632709 (2021)
  33. Acylpolyamine Mygalin as a TLR4 Antagonist Based on Molecular Docking and In Vitro Analyses. Espinoza-Culupú A, Vázquez-Ramírez R, Farfán-López M, Mendes E, Notomi Sato M, da Silva Junior PI, Borges MM. Biomolecules 10 E1624 (2020)
  34. Comparative effects of dietary methionine and cysteine supplementation on redox status and intestinal integrity in immunologically challenged-weaned pigs. Koo B, Choi J, Holanda DM, Yang C, Nyachoti CM. Amino Acids 55 139-152 (2023)
  35. Engineering a multi-epitope vaccine candidate against Leishmania infantum using comprehensive Immunoinformatics methods. Shams M, Nourmohammadi H, Majidiani H, Shariatzadeh SA, Asghari A, Fatollahzadeh M, Irannejad H. Biologia (Bratisl) 77 277-289 (2022)
  36. Exploring electrostatic patterns of human, murine, equine and canine TLR4/MD-2 receptors. Lozano-Aponte J, Scior T, Ambrosio FNM, González-Melchor M, Alexander C. Innate Immun 26 364-380 (2020)
  37. Simultaneous control of infection and inflammation with keratin-derived antibacterial peptides targeting TLRs and co-receptors. Sun Y, Chan J, Bose K, Tam C. Sci Transl Med 15 eade2909 (2023)
  38. β-(1→4)-Mannobiose Acts as an Immunostimulatory Molecule in Murine Dendritic Cells by Binding the TLR4/MD-2 Complex. Cheng TY, Lin YJ, Saburi W, Vieths S, Scheurer S, Schülke S, Toda M. Cells 10 1774 (2021)
  39. Activation of Toll-like receptor 4 by Ebola virus-shed glycoprotein is direct and requires the internal fusion loop but not glycosylation. Scherm MJ, Gangloff M, Gay NJ. Cell Rep 41 111562 (2022)
  40. HSP60-Derived Peptide as an LPS/TLR4 Modulator: An in silico Approach. Vila-Casahonda RG, Lozano-Aponte J, Guerrero-Beltrán CE. Front Cardiovasc Med 9 731376 (2022)
  41. Herbal extracts that induce type I interferons through Toll-like receptor 4 signaling. Nakasuji-Togi M, Togi S, Saeki K, Kojima Y, Ozato K. Food Nutr Res 66 (2022)
  42. Inflammation in the lungs of mice due to methyl methacrylate exposure. Goenharto S, Sudiana IK, Salim S, Rusdiana E, Wahjuni S. Vet World 13 256-260 (2020)
  43. Screening Novel Vaccine Candidates for Leishmania Donovani by Combining Differential Proteomics and Immunoinformatics Analysis. Zhang J, Li J, Hu K, Zhou Q, Chen X, He J, Yin S, Chi Y, Liao X, Xiao Y, Qin H, Zheng Z, Chen J. Front Immunol 13 902066 (2022)
  44. Synthesis, structure-activity relationship studies and evaluation of a TLR 3/8/9 agonist and its analogues. Sarkar A, Galasiti Kankanamalage AC, Zhang Q, Cheng H, Sivaprakasam P, Naglich J, Xie C, Gangwar S, Boger DL. Med Chem Res 30 1377-1385 (2021)
  45. The interaction of MD-2 with small molecules in huanglian jiedu decoction play a critical role in the treatment of sepsis. Chen G, Wang X, Liu C, Zhang M, Han X, Xu Y. Front Pharmacol 13 947095 (2022)