5irx Citations

TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.

OpenAccess logo Nature 534 347-51 (2016)
Related entries: 5irz, 5is0

Cited: 454 times
EuropePMC logo PMID: 27281200

Abstract

When integral membrane proteins are visualized in detergents or other artificial systems, an important layer of information is lost regarding lipid interactions and their effects on protein structure. This is especially relevant to proteins for which lipids have both structural and regulatory roles. Here we demonstrate the power of combining electron cryo-microscopy with lipid nanodisc technology to ascertain the structure of the rat TRPV1 ion channel in a native bilayer environment. Using this approach, we determined the locations of annular and regulatory lipids and showed that specific phospholipid interactions enhance binding of a spider toxin to TRPV1 through formation of a tripartite complex. Furthermore, phosphatidylinositol lipids occupy the binding site for capsaicin and other vanilloid ligands, suggesting a mechanism whereby chemical or thermal stimuli elicit channel activation by promoting the release of bioactive lipids from a critical allosteric regulatory site.

Reviews - 5irx mentioned but not cited (14)

  1. Resolution advances in cryo-EM enable application to drug discovery. Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH. Curr Opin Struct Biol 41 194-202 (2016)
  2. Structural mechanisms of transient receptor potential ion channels. Cao E. J Gen Physiol 152 e201811998 (2020)
  3. Structural insights into the gating mechanisms of TRPV channels. Pumroy RA, Fluck EC, Ahmed T, Moiseenkova-Bell VY. Cell Calcium 87 102168 (2020)
  4. Structural Pharmacology of TRP Channels. Zhao Y, McVeigh BM, Moiseenkova-Bell VY. J Mol Biol 433 166914 (2021)
  5. The (Poly)Pharmacology of Cannabidiol in Neurological and Neuropsychiatric Disorders: Molecular Mechanisms and Targets. Vitale RM, Iannotti FA, Amodeo P. Int J Mol Sci 22 4876 (2021)
  6. Ligand-Binding Sites in Vanilloid-Subtype TRP Channels. Yelshanskaya MV, Sobolevsky AI. Front Pharmacol 13 900623 (2022)
  7. Current View of Ligand and Lipid Recognition by the Menthol Receptor TRPM8. Yin Y, Lee SY. Trends Biochem Sci 45 806-819 (2020)
  8. High-resolution structures of transient receptor potential vanilloid channels: Unveiling a functionally diverse group of ion channels. van Goor MK, de Jager L, Cheng Y, van der Wijst J. Protein Sci 29 1569-1580 (2020)
  9. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Cheng WWL, Arcario MJ, Petroff JT. Front Physiol 12 798102 (2021)
  10. Progress in the Structural Basis of thermoTRP Channel Polymodal Gating. Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. Int J Mol Sci 24 743 (2023)
  11. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. Biringer RG. J Cell Commun Signal 16 5-46 (2022)
  12. The regulatory mechanism of mammalian TRPMLs revealed by cryo-EM. Schmiege P, Fine M, Li X. FEBS J 285 2579-2585 (2018)
  13. Lipid-dependent sequential allosteric activation of heat-sensing TRPV1 channels by anchor-stereoselective "hot" vanilloid compounds and analogs. Wang G. Biochem Biophys Rep 28 101109 (2021)
  14. Thermosensory Transient Receptor Potential Ion Channels and Asthma. Kytikova OY, Novgorodtseva TP, Denisenko YK, Naumov DE, Gvozdenko TA, Perelman JM. Biomedicines 9 816 (2021)

Articles - 5irx mentioned but not cited (43)



Reviews citing this publication (124)

  1. Nanodiscs in Membrane Biochemistry and Biophysics. Denisov IG, Sligar SG. Chem Rev 117 4669-4713 (2017)
  2. Molecular Targets of the Phytocannabinoids: A Complex Picture. Morales P, Hurst DP, Reggio PH. Prog Chem Org Nat Prod 103 103-131 (2017)
  3. Advances in TRP channel drug discovery: from target validation to clinical studies. Koivisto AP, Belvisi MG, Gaudet R, Szallasi A. Nat Rev Drug Discov 21 41-59 (2022)
  4. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  5. Emerging Diversity in Lipid-Protein Interactions. Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Chem Rev 119 5775-5848 (2019)
  6. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  7. Transient Receptor Potential (TRP) Channels. Samanta A, Hughes TET, Moiseenkova-Bell VY. Subcell Biochem 87 141-165 (2018)
  8. Breaking barriers to novel analgesic drug development. Yekkirala AS, Roberson DP, Bean BP, Woolf CJ. Nat Rev Drug Discov 16 545-564 (2017)
  9. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Yang F, Zheng J. Protein Cell 8 169-177 (2017)
  10. Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry. Bolla JR, Agasid MT, Mehmood S, Robinson CV. Annu Rev Biochem 88 85-111 (2019)
  11. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Chem Rev 119 6086-6161 (2019)
  12. FAK Structure and Regulation by Membrane Interactions and Force in Focal Adhesions. Tapial Martínez P, López Navajas P, Lietha D. Biomolecules 10 E179 (2020)
  13. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Biochem Pharmacol 181 114096 (2020)
  14. TRPV1-Targeted Drugs in Development for Human Pain Conditions. Iftinca M, Defaye M, Altier C. Drugs 81 7-27 (2021)
  15. Membrane protein structural biology in the era of single particle cryo-EM. Cheng Y. Curr Opin Struct Biol 52 58-63 (2018)
  16. Known structures and unknown mechanisms of TMEM16 scramblases and channels. Falzone ME, Malvezzi M, Lee BC, Lee BC, Accardi A. J Gen Physiol 150 933-947 (2018)
  17. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Med Res Rev 37 936-983 (2017)
  18. Ion channels as therapeutic antibody targets. Hutchings CJ, Colussi P, Clark TG. MAbs 11 265-296 (2019)
  19. TRPV1: Structure, Endogenous Agonists, and Mechanisms. Benítez-Angeles M, Morales-Lázaro SL, Juárez-González E, Rosenbaum T. Int J Mol Sci 21 E3421 (2020)
  20. Transient Receptor Potential Channels and Calcium Signaling. Vangeel L, Voets T. Cold Spring Harb Perspect Biol 11 a035048 (2019)
  21. Thermally activated TRP channels: molecular sensors for temperature detection. Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. Phys Biol 15 021001 (2018)
  22. Cryo-EM: beyond the microscope. Earl LA, Falconieri V, Milne JL, Subramaniam S. Curr Opin Struct Biol 46 71-78 (2017)
  23. TRPV1: A Target for Rational Drug Design. Carnevale V, Rohacs T. Pharmaceuticals (Basel) 9 E52 (2016)
  24. Tools for Understanding Nanoscale Lipid Regulation of Ion Channels. Robinson CV, Rohacs T, Hansen SB. Trends Biochem Sci 44 795-806 (2019)
  25. Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Madej MG, Ziegler CM. Pflugers Arch 470 213-225 (2018)
  26. How Good Can Single-Particle Cryo-EM Become? What Remains Before It Approaches Its Physical Limits? Glaeser RM. Annu Rev Biophys 48 45-61 (2019)
  27. Ligand binding at the protein-lipid interface: strategic considerations for drug design. Payandeh J, Volgraf M. Nat Rev Drug Discov 20 710-722 (2021)
  28. Membrane mimetic systems in CryoEM: keeping membrane proteins in their native environment. Autzen HE, Julius D, Cheng Y. Curr Opin Struct Biol 58 259-268 (2019)
  29. The role of π-helices in TRP channel gating. Zubcevic L, Lee SY. Curr Opin Struct Biol 58 314-323 (2019)
  30. Organellar TRP channels. Zhang X, Hu M, Yang Y, Xu H. Nat Struct Mol Biol 25 1009-1018 (2018)
  31. Remarkable Progress with Small-Molecule Modulation of TRPC1/4/5 Channels: Implications for Understanding the Channels in Health and Disease. Minard A, Bauer CC, Wright DJ, Rubaiy HN, Muraki K, Beech DJ, Bon RS. Cells 7 E52 (2018)
  32. Structural biology of glutamate receptor ion channel complexes. Mayer ML. Curr Opin Struct Biol 41 119-127 (2016)
  33. Structure Determination by Single-Particle Cryo-Electron Microscopy: Only the Sky (and Intrinsic Disorder) is the Limit. Nwanochie E, Uversky VN. Int J Mol Sci 20 E4186 (2019)
  34. Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. Storozhuk MV, Moroz OF, Zholos AV. Biomed Res Int 2019 5806321 (2019)
  35. The energetics of protein-lipid interactions as viewed by molecular simulations. Corey RA, Stansfeld PJ, Sansom MSP. Biochem Soc Trans 48 25-37 (2020)
  36. High-resolution cryo-EM: the nuts and bolts. Elmlund D, Le SN, Elmlund H. Curr Opin Struct Biol 46 1-6 (2017)
  37. Ion channels as lipid sensors: from structures to mechanisms. Thompson MJ, Baenziger JE. Nat Chem Biol 16 1331-1342 (2020)
  38. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Scapin G, Potter CS, Carragher B. Cell Chem Biol 25 1318-1325 (2018)
  39. Identifying and Visualizing Macromolecular Flexibility in Structural Biology. Palamini M, Canciani A, Forneris F. Front Mol Biosci 3 47 (2016)
  40. Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception. Choi SI, Hwang SW. Biomol Ther (Seoul) 26 255-267 (2018)
  41. Drug discovery in the era of cryo-electron microscopy. Robertson MJ, Meyerowitz JG, Skiniotis G. Trends Biochem Sci 47 124-135 (2022)
  42. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Saito S, Tominaga M. Temperature (Austin) 4 141-152 (2017)
  43. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. J Biol Chem 296 100557 (2021)
  44. Resiniferatoxin: The Evolution of the "Molecular Scalpel" for Chronic Pain Relief. Brown DC. Pharmaceuticals (Basel) 9 E47 (2016)
  45. TRP channels: a journey towards a molecular understanding of pain. Rosenbaum T, Morales-Lázaro SL, Islas LD. Nat Rev Neurosci 23 596-610 (2022)
  46. The S4---S5 linker - gearbox of TRP channel gating. Hofmann L, Wang H, Zheng W, Philipp SE, Hidalgo P, Cavalié A, Chen XZ, Beck A, Flockerzi V. Cell Calcium 67 156-165 (2017)
  47. Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies. Ognjenović J, Grisshammer R, Subramaniam S. Annu Rev Biomed Eng 21 395-415 (2019)
  48. TRPM5 in the battle against diabetes and obesity. Vennekens R, Mesuere M, Philippaert K. Acta Physiol (Oxf) 222 (2018)
  49. The Mysteries of Capsaicin-Sensitive Afferents. Fischer MJM, Ciotu CI, Szallasi A. Front Physiol 11 554195 (2020)
  50. Voltage-Sensing Phosphatases: Biophysics, Physiology, and Molecular Engineering. Okamura Y, Kawanabe A, Kawai T. Physiol Rev 98 2097-2131 (2018)
  51. Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Conrard L, Tyteca D. Biomolecules 9 E513 (2019)
  52. Sensory TRP Channels in Three Dimensions. Diver MM, Lin King JV, Julius D, Cheng Y. Annu Rev Biochem 91 629-649 (2022)
  53. Structure of IP3R channel: high-resolution insights from cryo-EM. Baker MR, Fan G, Serysheva II. Curr Opin Struct Biol 46 38-47 (2017)
  54. New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors. Grisshammer R. Protein Sci 26 1493-1504 (2017)
  55. Animal Toxins Providing Insights into TRPV1 Activation Mechanism. Geron M, Hazan A, Priel A. Toxins (Basel) 9 E326 (2017)
  56. Heat activation mechanism of TRPV1: New insights from molecular dynamics simulation. Zheng W, Wen H. Temperature (Austin) 6 120-131 (2019)
  57. Durable vesicles for reconstitution of membrane proteins in biotechnology. Beales PA, Khan S, Muench SP, Jeuken LJ. Biochem Soc Trans 45 15-26 (2017)
  58. Mechanosensitive ion channels in cell migration. Canales Coutiño B, Mayor R. Cells Dev 166 203683 (2021)
  59. The Role of Toxins in the Pursuit for Novel Analgesics. Maatuf Y, Geron M, Priel A. Toxins (Basel) 11 E131 (2019)
  60. Structure and function of the calcium-selective TRP channel TRPV6. Yelshanskaya MV, Nadezhdin KD, Kurnikova MG, Sobolevsky AI. J Physiol 599 2673-2697 (2021)
  61. Nociceptor Signalling through ion Channel Regulation via GPCRs. Salzer I, Ray S, Schicker K, Boehm S. Int J Mol Sci 20 E2488 (2019)
  62. Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology. Jami S, Erickson A, Brierley SM, Vetter I. Toxins (Basel) 10 E15 (2017)
  63. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Merino F, Raunser S. Angew Chem Int Ed Engl 56 2846-2860 (2017)
  64. Lipid environment of membrane proteins in cryo-EM based structural analysis. Mio K, Sato C. Biophys Rev 10 307-316 (2018)
  65. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1. Díaz-Franulic I, Caceres-Molina J, Sepulveda RV, Gonzalez-Nilo F, Latorre R. Mol Pharmacol 90 300-308 (2016)
  66. Cryo-EM Grid Preparation of Membrane Protein Samples for Single Particle Analysis. Sgro GG, Costa TRD. Front Mol Biosci 5 74 (2018)
  67. Druggability of Voltage-Gated Sodium Channels-Exploring Old and New Drug Receptor Sites. Wisedchaisri G, Gamal El-Din TM. Front Pharmacol 13 858348 (2022)
  68. Large Nanodiscs: A Potential Game Changer in Structural Biology of Membrane Protein Complexes and Virus Entry. Padmanabha Das KM, Shih WM, Wagner G, Nasr ML. Front Bioeng Biotechnol 8 539 (2020)
  69. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy. Lau C, Hunter MJ, Stewart A, Perozo E, Vandenberg JI. J Physiol 596 1107-1119 (2018)
  70. Structural biology of thermoTRPV channels. Yuan P. Cell Calcium 84 102106 (2019)
  71. While the revolution will not be crystallized, biochemistry reigns supreme. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. Protein Sci 26 69-81 (2017)
  72. Detergent-Free Isolation of Membrane Proteins and Strategies to Study Them in a Near-Native Membrane Environment. Krishnarjuna B, Ramamoorthy A. Biomolecules 12 1076 (2022)
  73. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Pluskal T, Weng JK. Chem Soc Rev 47 1592-1637 (2018)
  74. Structural Variability in the RLR-MAVS Pathway and Sensitive Detection of Viral RNAs. Jiang QX. Med Chem 15 443-458 (2019)
  75. Advances in methods for atomic resolution macromolecular structure determination. Thompson MC, Yeates TO, Rodriguez JA. F1000Res 9 F1000 Faculty Rev-667 (2020)
  76. Recent advances in membrane mimetics for membrane protein research. Young JW. Biochem Soc Trans 51 1405-1416 (2023)
  77. TRPV1 in chronic pruritus and pain: Soft modulation as a therapeutic strategy. Fernández-Carvajal A, Fernández-Ballester G, Ferrer-Montiel A. Front Mol Neurosci 15 930964 (2022)
  78. The importance of the membrane for biophysical measurements. Chorev DS, Robinson CV. Nat Chem Biol 16 1285-1292 (2020)
  79. Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P2. Five things to know. Patel S, Yuan Y, Gunaratne GS, Rahman T, Marchant JS. Cell Calcium 103 102543 (2022)
  80. Cholesterol-Dependent Gating Effects on Ion Channels. Jiang QX. Adv Exp Med Biol 1115 167-190 (2019)
  81. Insights into the Role of Membrane Lipids in the Structure, Function and Regulation of Integral Membrane Proteins. Renard K, Byrne B. Int J Mol Sci 22 9026 (2021)
  82. TRPV1 may increase the effectiveness of estrogen therapy on neuroprotection and neuroregeneration. Ramírez-Barrantes R, Marchant I, Olivero P, Olivero P. Neural Regen Res 11 1204-1207 (2016)
  83. Cholesterol Regulation of Membrane Proteins Revealed by Two-Color Super-Resolution Imaging. Yuan Z, Hansen SB. Membranes (Basel) 13 250 (2023)
  84. Potential Novel Strategies for the Treatment of Dental Pulp-Derived Pain: Pharmacological Approaches and Beyond. Schuh CMAP, Benso B, Aguayo S. Front Pharmacol 10 1068 (2019)
  85. Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids. Overduin M, Trieber C, Prosser RS, Picard LP, Sheff JG. Membranes (Basel) 11 451 (2021)
  86. Transient receptor potential ankyrin 1 channel: An evolutionarily tuned thermosensor. Sinica V, Vlachová V. Physiol Res 70 363-381 (2021)
  87. Visualization of biological macromolecules at near-atomic resolution: cryo-electron microscopy comes of age. Mitra AK. Acta Crystallogr F Struct Biol Commun 75 3-11 (2019)
  88. A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy. Bibow S, Hiller S. FEBS J 286 1610-1623 (2019)
  89. A molecular perspective on identifying TRPV1 thermosensitive regions and disentangling polymodal activation. Luu DD, Owens AM, Mebrat MD, Van Horn WD. Temperature (Austin) 10 67-101 (2023)
  90. Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening. Blanes-Mira C, Fernández-Aguado P, de Andrés-López J, Fernández-Carvajal A, Ferrer-Montiel A, Fernández-Ballester G. Molecules 28 175 (2022)
  91. Structure of an innexin gap junction channel and cryo-EM sample preparation. Oshima A. Microscopy (Oxf) 66 371-379 (2017)
  92. Two Decades of Evolution of Our Understanding of the Transient Receptor Potential Melastatin 2 (TRPM2) Cation Channel. Szollosi A. Life (Basel) 11 397 (2021)
  93. Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Jodaitis L, van Oene T, Martens C. Int J Mol Sci 22 7267 (2021)
  94. Nanodiscs for Structural Biology in a Membranous Environment. Yokogawa M, Fukuda M, Osawa M. Chem Pharm Bull (Tokyo) 67 321-326 (2019)
  95. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Microsc Microanal 24 406-419 (2018)
  96. Essay on Biomembrane Structure. Gerle C. J Membr Biol 252 115-130 (2019)
  97. Molecular mechanisms of coupling to voltage sensors in voltage-evoked cellular signals. Okamura Y, Okochi Y. Proc Jpn Acad Ser B Phys Biol Sci 95 111-135 (2019)
  98. Native-like environments afford novel mechanistic insights into membrane proteins. Notti RQ, Walz T. Trends Biochem Sci 47 561-569 (2022)
  99. Peppers: A "Hot" Natural Source for Antitumor Compounds. Cunha MR, Tavares MT, Fernandes TB, Parise-Filho R. Molecules 26 1521 (2021)
  100. Toxins in pain. Cardoso FC, Hasan M, Zhao T, Lewis RJ. Curr Opin Support Palliat Care 12 132-141 (2018)
  101. Understanding diverse TRPV1 signaling - an update. Andresen MC. F1000Res 8 F1000 Faculty Rev-1978 (2019)
  102. Electron cryomicroscopy as a powerful tool in biomedical research. Quentin D, Raunser S. J Mol Med (Berl) 96 483-493 (2018)
  103. Large nanodiscs going viral. Nasr ML. Curr Opin Struct Biol 60 150-156 (2020)
  104. Modelling the interactions between animal venom peptides and membrane proteins. Hung A, Kuyucak S, Schroeder CI, Kaas Q. Neuropharmacology 127 20-31 (2017)
  105. Modulation and Regulation of Canonical Transient Receptor Potential 3 (TRPC3) Channels. Cole BA, Becker EBE. Cells 12 2215 (2023)
  106. Whaddaya Know: A Guide to Uncertainty and Subjectivity in Structural Biology. Mackay JP, Landsberg MJ, Whitten AE, Bond CS. Trends Biochem Sci 42 155-167 (2017)
  107. The interaction of TRPV1 and lipids: Insights into lipid metabolism. Abdalla SS, Harb AA, Almasri IM, Bustanji YK. Front Physiol 13 1066023 (2022)
  108. X-ray crystallography of TRP channels. Singh AK, McGoldrick LL, Saotome K, Sobolevsky AI. Channels (Austin) 12 137-152 (2018)
  109. A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel. Amaya-Rodriguez CA, Carvajal-Zamorano K, Bustos D, Alegría-Arcos M, Castillo K. Front Pharmacol 14 1251061 (2023)
  110. Detergents and alternatives in cryo-EM studies of membrane proteins. Li S. Acta Biochim Biophys Sin (Shanghai) 54 1049-1056 (2022)
  111. TRPV1 in male reproductive system: focus on sperm function. Xiao W, Chen Y. Mol Cell Biochem 477 2567-2579 (2022)
  112. Targeting TRP channels: recent advances in structure, ligand binding, and molecular mechanisms. Huang J, Korsunsky A, Yazdani M, Chen J. Front Mol Neurosci 16 1334370 (2023)
  113. Venom Peptide Toxins Targeting the Outer Pore Region of Transient Receptor Potential Vanilloid 1 in Pain: Implications for Analgesic Drug Development. Hwang SM, Jo YY, Cohen CF, Kim YH, Berta T, Park CK. Int J Mol Sci 23 5772 (2022)
  114. Designer Nanodiscs to Probe and Reprogram Membrane Biology in Synapses. Dallo S, Shin J, Zhang S, Ren Q, Bao H. J Mol Biol 435 167757 (2023)
  115. Dilation of ion selectivity filters in cation channels. Huffer K, Tan XF, Fernández-Mariño AI, Dhingra S, Swartz KJ. Trends Biochem Sci 49 417-430 (2024)
  116. Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A2A Adenosine Receptor. Tzortzini E, Kolocouris A. Biomolecules 13 957 (2023)
  117. The Role of Lipids in CRAC Channel Function. Maltan L, Andova AM, Derler I. Biomolecules 12 352 (2022)
  118. The envenomation of general physiology throughout the last century. Sack JT. J Gen Physiol 149 975-983 (2017)
  119. [Progress on structural biology of voltage-gated ion channels]. Song F, Guo J. Zhejiang Da Xue Xue Bao Yi Xue Ban 48 25-33 (2019)
  120. Binding interactions of fatty acyl lipid mediators within the vanilloid pocket of TRPV1: A molecular dynamics study. Birkic N, Visentin D, Svedružić Ž, Reynolds CA. Prostaglandins Other Lipid Mediat 169 106771 (2023)
  121. Lipid-Mediated Mechanisms of Thermal Adaptation and Thermoregulatory Behavior in Animals. Nagao K, Suito T, Murakami A, Umeda M. Adv Exp Med Biol 1461 79-95 (2024)
  122. Nanodisc Technology: Direction toward Physicochemical Characterization of Chemosensory Membrane Proteins in Food Flavor Research. Karanth S, Benthin J, Wiesenfarth M, Somoza V, Koehler M. J Agric Food Chem 72 14521-14529 (2024)
  123. Temperature-Dependent Activation of Thermosensitive Transient Receptor Potential Channels. Uchida K. Adv Exp Med Biol 1461 47-59 (2024)
  124. Two-Dimensional Interfacial Exchange Diffusion Has the Potential to Augment Spatiotemporal Precision of Ca2+ Signaling. van Breemen C, Fameli N, Groschner K. Int J Mol Sci 23 850 (2022)

Articles citing this publication (273)