5it7 Citations

Structural characterization of ribosome recruitment and translocation by type IV IRES.

Abstract

Viral mRNA sequences with a type IV IRES are able to initiate translation without any host initiation factors. Initial recruitment of the small ribosomal subunit as well as two translocation steps before the first peptidyl transfer are essential for the initiation of translation by these mRNAs. Using electron cryomicroscopy (cryo-EM) we have structurally characterized at high resolution how the Cricket Paralysis Virus Internal Ribosomal Entry Site (CrPV-IRES) binds the small ribosomal subunit (40S) and the translocation intermediate stabilized by elongation factor 2 (eEF2). The CrPV-IRES restricts tvhe otherwise flexible 40S head to a conformation compatible with binding the large ribosomal subunit (60S). Once the 60S is recruited, the binary CrPV-IRES/80S complex oscillates between canonical and rotated states (Fernández et al., 2014; Koh et al., 2014), as seen for pre-translocation complexes with tRNAs. Elongation factor eEF2 with a GTP analog stabilizes the ribosome-IRES complex in a rotated state with an extra ~3 degrees of rotation. Key residues in domain IV of eEF2 interact with pseudoknot I (PKI) of the CrPV-IRES stabilizing it in a conformation reminiscent of a hybrid tRNA state. The structure explains how diphthamide, a eukaryotic and archaeal specific post-translational modification of a histidine residue of eEF2, is involved in translocation.

Articles - 5it7 mentioned but not cited (4)

  1. Structural characterization of ribosome recruitment and translocation by type IV IRES. Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernández IS. Elife 5 e13567 (2016)
  2. tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T, Dabrowski M, Bürger J, Mielke T, Blanchard SC, Spahn CMT, Budkevich TV. Cell Rep 25 2676-2688.e7 (2018)
  3. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Yamashita K, Palmer CM, Burnley T, Murshudov GN. Acta Crystallogr D Struct Biol 77 1282-1291 (2021)
  4. RiboXYZ: a comprehensive database for visualizing and analyzing ribosome structures. Kushner A, Petrov AS, Dao Duc K. Nucleic Acids Res 51 D509-D516 (2023)


Reviews citing this publication (16)

  1. Noncanonical Translation Initiation in Eukaryotes. Kwan T, Thompson SR. Cold Spring Harb Perspect Biol 11 (2019)
  2. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Yamamoto H, Unbehaun A, Spahn CMT. Trends Biochem. Sci. 42 655-668 (2017)
  3. Translation Elongation and Recoding in Eukaryotes. Dever TE, Dinman JD, Green R. Cold Spring Harb Perspect Biol 10 (2018)
  4. Dynamics of IRES-mediated translation. Johnson AG, Grosely R, Petrov AN, Puglisi JD. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (2017)
  5. The Regulation of Translation in Alphavirus-Infected Cells. Carrasco L, Sanz MA, González-Almela E. Viruses 10 (2018)
  6. Viral internal ribosomal entry sites: four classes for one goal. Mailliot J, Martin F. Wiley Interdiscip Rev RNA 9 (2018)
  7. tRNA-mimicry in IRES-mediated translation and recoding. Butcher SE, Jan E. RNA Biol 13 1068-1074 (2016)
  8. Moonlighting translation factors: multifunctionality drives diverse gene regulation. Farache D, Antine SP, Lee ASY. Trends Cell Biol 32 762-772 (2022)
  9. Single-molecule fluorescence imaging: Generating insights into molecular interactions in virology. Banerjee S, Maurya S, Roy R. J Biosci 43 519-540 (2018)
  10. The mechanism of translation. Frank J. F1000Res 6 198 (2017)
  11. How Ricin Damages the Ribosome. Grela P, Szajwaj M, Horbowicz-Drożdżal P, Tchórzewski M. Toxins (Basel) 11 (2019)
  12. Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells. Burgess HM, Vink EI, Mohr I. Genes Dev 36 108-132 (2022)
  13. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs. Sorokin II, Vassilenko KS, Terenin IM, Kalinina NO, Agol VI, Dmitriev SE. Biochemistry (Mosc) 86 1060-1094 (2021)
  14. Roles of Elongator Dependent tRNA Modification Pathways in Neurodegeneration and Cancer. Hawer H, Hammermeister A, Ravichandran KE, Glatt S, Schaffrath R, Klassen R. Genes (Basel) 10 (2018)
  15. Single-Molecule Fluorescence Applied to Translation. Prabhakar A, Puglisi EV, Puglisi JD. Cold Spring Harb Perspect Biol 11 (2019)
  16. The molecular basis of translation initiation and its regulation in eukaryotes. Brito Querido J, Díaz-López I, Ramakrishnan V. Nat Rev Mol Cell Biol (2023)

Articles citing this publication (35)

  1. Accuracy mechanism of eukaryotic ribosome translocation. Djumagulov M, Demeshkina N, Jenner L, Rozov A, Yusupov M, Yusupova G. Nature 600 543-546 (2021)
  2. Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis. Malyutin AG, Musalgaonkar S, Patchett S, Frank J, Johnson AW. EMBO J. 36 854-868 (2017)
  3. CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Tabet R, Schaeffer L, Freyermuth F, Jambeau M, Workman M, Lee CZ, Lin CC, Jiang J, Jansen-West K, Abou-Hamdan H, Désaubry L, Gendron T, Petrucelli L, Martin F, Lagier-Tourenne C. Nat Commun 9 152 (2018)
  4. Recurring RNA structural motifs underlie the mechanics of L1 stalk movement. Mohan S, Noller HF. Nat Commun 8 14285 (2017)
  5. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Ivanov IP, Shin BS, Loughran G, Tzani I, Young-Baird SK, Cao C, Atkins JF, Dever TE. Mol. Cell 70 254-264.e6 (2018)
  6. The ATPase Fap7 Tests the Ability to Carry Out Translocation-like Conformational Changes and Releases Dim1 during 40S Ribosome Maturation. Ghalei H, Trepreau J, Collins JC, Bhaskaran H, Strunk BS, Karbstein K. Mol. Cell 67 990-1000.e3 (2017)
  7. The Halastavi árva Virus Intergenic Region IRES Promotes Translation by the Simplest Possible Initiation Mechanism. Abaeva IS, Vicens Q, Bochler A, Soufari H, Simonetti A, Pestova TV, Hashem Y, Hellen CUT. Cell Rep 33 108476 (2020)
  8. Concerted action of two 3' cap-independent translation enhancers increases the competitive strength of translated viral genomes. Du Z, Alekhina OM, Vassilenko KS, Simon AE. Nucleic Acids Res. 45 9558-9572 (2017)
  9. Molecular analysis of the factorless internal ribosome entry site in Cricket Paralysis virus infection. Kerr CH, Ma ZW, Jang CJ, Thompson SR, Jan E. Sci Rep 6 37319 (2016)
  10. Multiplication of Ribosomal P-Stalk Proteins Contributes to the Fidelity of Translation. Wawiórka L, Molestak E, Szajwaj M, Michalec-Wawiórka B, Mołoń M, Borkiewicz L, Grela P, Boguszewska A, Tchórzewski M. Mol. Cell. Biol. 37 (2017)
  11. RNA modifications and cancer. Haruehanroengra P, Zheng YY, Zhou Y, Huang Y, Sheng J. RNA Biol 17 1560-1575 (2020)
  12. Complex Evolutionary History of Translation Elongation Factor 2 and Diphthamide Biosynthesis in Archaea and Parabasalids. Narrowe AB, Spang A, Stairs CW, Caceres EF, Baker BJ, Miller CS, Ettema TJG. Genome Biol Evol 10 2380-2393 (2018)
  13. Ribosome-dependent conformational flexibility changes and RNA dynamics of IRES domains revealed by differential SHAPE. Lozano G, Francisco-Velilla R, Martinez-Salas E. Sci Rep 8 5545 (2018)
  14. Functional Insights into the Adjacent Stem-Loop in Honey Bee Dicistroviruses That Promotes Internal Ribosome Entry Site-Mediated Translation and Viral Infection Au HHT, Elspass VM, Jan E. J. Virol. 92 (2018)
  15. Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast. Hawer H, Ütkür K, Arend M, Mayer K, Adrian L, Brinkmann U, Schaffrath R. PLoS ONE 13 e0205870 (2018)
  16. Kinetics of CrPV and HCV IRES-mediated eukaryotic translation using single-molecule fluorescence microscopy. Bugaud O, Barbier N, Chommy H, Fiszman N, Le Gall A, Dulin D, Saguy M, Westbrook N, Perronet K, Namy O. RNA 23 1626-1635 (2017)
  17. Negative charge in the RACK1 loop broadens the translational capacity of the human ribosome. Rollins MG, Shasmal M, Meade N, Astar H, Shen PS, Walsh D. Cell Rep 36 109663 (2021)
  18. Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNA. Yuan S, Peng L, Park JJ, Hu Y, Devarkar SC, Dong MB, Shen Q, Wu S, Chen S, Lomakin IB, Xiong Y. Mol Cell 80 1055-1066.e6 (2020)
  19. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. Acosta-Reyes F, Neupane R, Frank J, Fernández IS. EMBO J. 38 e102226 (2019)
  20. The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process. Hashem Y, Frank J. Annu Rev Biophys (2018)
  21. The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Pernod K, Schaeffer L, Chicher J, Hok E, Rick C, Geslain R, Eriani G, Westhof E, Ryckelynck M, Martin F. Nucleic Acids Res 48 6170-6183 (2020)
  22. A tRNA-mimic Strategy to Explore the Role of G34 of tRNAGly in Translation and Codon Frameshifting. Janvier A, Despons L, Schaeffer L, Tidu A, Martin F, Eriani G. Int J Mol Sci 20 (2019)
  23. Binding of a viral IRES to the 40S subunit occurs in two successive steps mediated by eS25. Walters B, Axhemi A, Jankowsky E, Thompson SR. Nucleic Acids Res 48 8063-8073 (2020)
  24. Biophysical Studies of the Binding of Viral RNA with the 80S Ribosome Using switchSENSE. Schenckbecher E, Bec G, Sakamoto T, Meyer B, Ennifar E. Methods Mol Biol 2263 341-350 (2021)
  25. DPH1 and DPH2 variants that confer susceptibility to diphthamide deficiency syndrome in human cells and yeast models. Ütkür K, Mayer K, Khan M, Manivannan T, Schaffrath R, Brinkmann U. Dis Model Mech 16 dmm050207 (2023)
  26. Dual tRNA mimicry in the Cricket Paralysis Virus IRES uncovers an unexpected similarity with the Hepatitis C Virus IRES. Pisareva VP, Pisarev AV, Fernández IS. Elife 7 (2018)
  27. MEHMO syndrome mutation EIF2S3-I259M impairs initiator Met-tRNAiMet binding to eukaryotic translation initiation factor eIF2. Young-Baird SK, Shin BS, Dever TE. Nucleic Acids Res. 47 855-867 (2019)
  28. RACK1 Regulates Poxvirus Protein Synthesis Independently of Its Role in Ribosome-Based Stress Signaling. Park C, Walsh D. J Virol 96 e0109322 (2022)
  29. Regulation of translation by ribosomal RNA pseudouridylation. Zhao Y, Rai J, Li H. Sci Adv 9 eadg8190 (2023)
  30. Sordarin bound eEF2 unlocks spontaneous forward and reverse translocation on CrPV IRES. Ou Z, Petrov A. Nucleic Acids Res 51 6999-7013 (2023)
  31. The Hinge Region of the Israeli Acute Paralysis Virus Internal Ribosome Entry Site Directs Ribosomal Positioning, Translational Activity, and Virus Infection. Kirby MP, Stevenson C, Worrall LJ, Chen Y, Young C, Youm J, Strynadka NCJ, Allan DW, Jan E. J Virol 96 e0133021 (2022)
  32. The prokaryotic activity of the IGR IRESs is mediated by ribosomal protein S1. Roberts L, Wieden HJ. Nucleic Acids Res 50 9355-9367 (2022)
  33. Translational fidelity and growth of Arabidopsis require stress-sensitive diphthamide biosynthesis. Zhang H, Quintana J, Ütkür K, Adrian L, Hawer H, Mayer K, Gong X, Castanedo L, Schulten A, Janina N, Peters M, Wirtz M, Brinkmann U, Schaffrath R, Krämer U. Nat Commun 13 4009 (2022)
  34. eEF2 diphthamide modification restrains spurious frameshifting to maintain translational fidelity. Shin BS, Ivanov IP, Kim JR, Cao C, Kinzy TG, Dever TE. Nucleic Acids Res 51 6899-6913 (2023)
  35. mRNA reading frame maintenance during eukaryotic ribosome translocation. Milicevic N, Jenner L, Myasnikov A, Yusupov M, Yusupova G. Nature (2023)