5k0z Citations

Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery.

Abstract

Recent advances in single-particle cryoelecton microscopy (cryo-EM) are enabling generation of numerous near-atomic resolution structures for well-ordered protein complexes with sizes ≥ ∼200 kDa. Whether cryo-EM methods are equally useful for high-resolution structural analysis of smaller, dynamic protein complexes such as those involved in cellular metabolism remains an important question. Here, we present 3.8 Å resolution cryo-EM structures of the cancer target isocitrate dehydrogenase (93 kDa) and identify the nature of conformational changes induced by binding of the allosteric small-molecule inhibitor ML309. We also report 2.8-Å- and 1.8-Å-resolution structures of lactate dehydrogenase (145 kDa) and glutamate dehydrogenase (334 kDa), respectively. With these results, two perceived barriers in single-particle cryo-EM are overcome: (1) crossing 2 Å resolution and (2) obtaining structures of proteins with sizes < 100 kDa, demonstrating that cryo-EM can be used to investigate a broad spectrum of drug-target interactions and dynamic conformational states.

Reviews - 5k0z mentioned but not cited (1)

  1. Resolution advances in cryo-EM enable application to drug discovery. Subramaniam S, Earl LA, Falconieri V, Milne JL, Egelman EH. Curr Opin Struct Biol 41 194-202 (2016)

Articles - 5k0z mentioned but not cited (2)

  1. Automated map sharpening by maximization of detail and connectivity. Terwilliger TC, Sobolev OV, Afonine PV, Adams PD. Acta Crystallogr D Struct Biol 74 545-559 (2018)
  2. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Terwilliger TC, Adams PD, Afonine PV, Sobolev OV. Nat Methods 15 905-908 (2018)


Reviews citing this publication (118)

  1. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  2. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  3. Challenges and opportunities in cryo-EM single-particle analysis. Lyumkis D. J Biol Chem 294 5181-5197 (2019)
  4. Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Dang L, Su SM. Annu Rev Biochem 86 305-331 (2017)
  5. Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Ran X, Gestwicki JE. Curr Opin Chem Biol 44 75-86 (2018)
  6. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Liu XR, Zhang MM, Gross ML. Chem Rev 120 4355-4454 (2020)
  7. Harnessing Ion-Binding Sites for GPCR Pharmacology. Zarzycka B, Zaidi SA, Roth BL, Katritch V. Pharmacol Rev 71 571-595 (2019)
  8. Surface Chemistry Can Unlock Drivers of Surface Stability of SARS-CoV-2 in a Variety of Environmental Conditions. Joonaki E, Hassanpouryouzband A, Heldt CL, Areo O. Chem 6 2135-2146 (2020)
  9. Covalent Organic Frameworks as a Platform for Multidimensional Polymerization. Bisbey RP, Dichtel WR. ACS Cent Sci 3 533-543 (2017)
  10. Cryo-EM: beyond the microscope. Earl LA, Falconieri V, Milne JL, Subramaniam S. Curr Opin Struct Biol 46 71-78 (2017)
  11. How cryo-electron microscopy and X-ray crystallography complement each other. Wang HW, Wang JW. Protein Sci 26 32-39 (2017)
  12. Mechanistic insight into eukaryotic 60S ribosomal subunit biogenesis by cryo-electron microscopy. Greber BJ. RNA 22 1643-1662 (2016)
  13. Septin structure and filament assembly. Valadares NF, d' Muniz Pereira H, Ulian Araujo AP, Garratt RC. Biophys Rev 9 481-500 (2017)
  14. Animal NLRs provide structural insights into plant NLR function. Bentham A, Burdett H, Anderson PA, Williams SJ, Kobe B. Ann Bot 119 827-702 (2017)
  15. Towards a Structural View of Drug Binding to hERG K+ Channels. Vandenberg JI, Perozo E, Allen TW. Trends Pharmacol Sci 38 899-907 (2017)
  16. Cryo-electron microscopy for the study of virus assembly. Luque D, Castón JR. Nat Chem Biol 16 231-239 (2020)
  17. Understanding the invisible hands of sample preparation for cryo-EM. Weissenberger G, Henderikx RJM, Peters PJ. Nat Methods 18 463-471 (2021)
  18. A molecular engineering toolbox for the structural biologist. Debelouchina GT, Muir TW. Q Rev Biophys 50 e7 (2017)
  19. Advances in RNA 3D Structure Modeling Using Experimental Data. Li B, Cao Y, Westhof E, Miao Z. Front Genet 11 574485 (2020)
  20. Cryo-electron tomography-the cell biology that came in from the cold. Wagner J, Schaffer M, Fernández-Busnadiego R. FEBS Lett 591 2520-2533 (2017)
  21. Developments, applications, and prospects of cryo-electron microscopy. Benjin X, Ling L. Protein Sci 29 872-882 (2020)
  22. High-resolution cryo-EM: the nuts and bolts. Elmlund D, Le SN, Elmlund H. Curr Opin Struct Biol 46 1-6 (2017)
  23. Structure-based drug design: aiming for a perfect fit. van Montfort RLM, Workman P. Essays Biochem 61 431-437 (2017)
  24. The integrative role of cryo electron microscopy in molecular and cellular structural biology. Orlov I, Myasnikov AG, Andronov L, Natchiar SK, Khatter H, Beinsteiner B, Ménétret JF, Hazemann I, Mohideen K, Tazibt K, Tabaroni R, Kratzat H, Djabeur N, Bruxelles T, Raivoniaina F, Pompeo LD, Torchy M, Billas I, Urzhumtsev A, Klaholz BP. Biol Cell 109 81-93 (2017)
  25. Identifying and Visualizing Macromolecular Flexibility in Structural Biology. Palamini M, Canciani A, Forneris F. Front Mol Biosci 3 47 (2016)
  26. IgG Antibody 3D Structures and Dynamics. Jay JW, Bray B, Qi Y, Igbinigie E, Wu H, Li J, Ren G. Antibodies (Basel) 7 E18 (2018)
  27. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Scheffzek K, Shivalingaiah G. Cold Spring Harb Perspect Med 9 a031500 (2019)
  28. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Scapin G, Potter CS, Carragher B. Cell Chem Biol 25 1318-1325 (2018)
  29. The changing landscape of membrane protein structural biology through developments in electron microscopy. Rawson S, Davies S, Lippiat JD, Muench SP. Mol Membr Biol 33 12-22 (2016)
  30. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. Schlundt A, Tants JN, Sattler M. Methods 118-119 119-136 (2017)
  31. Where is crystallography going? Grimes JM, Hall DR, Ashton AW, Evans G, Owen RL, Wagner A, McAuley KE, von Delft F, Orville AM, Sorensen T, Walsh MA, Ginn HM, Stuart DI. Acta Crystallogr D Struct Biol 74 152-166 (2018)
  32. How low can we go? Structure determination of small biological complexes using single-particle cryo-EM. Wu M, Lander GC. Curr Opin Struct Biol 64 9-16 (2020)
  33. Structure of IP3R channel: high-resolution insights from cryo-EM. Baker MR, Fan G, Serysheva II. Curr Opin Struct Biol 46 38-47 (2017)
  34. Watching cellular machinery in action, one molecule at a time. Monachino E, Spenkelink LM, van Oijen AM. J Cell Biol 216 41-51 (2017)
  35. Cryo-EM as a powerful tool for drug discovery. Van Drie JH, Tong L. Bioorg Med Chem Lett 30 127524 (2020)
  36. DNA-based construction at the nanoscale: emerging trends and applications. Xavier PL, Chandrasekaran AR. Nanotechnology 29 062001 (2018)
  37. CryoEM maps are full of potential. Marques MA, Purdy MD, Yeager M. Curr Opin Struct Biol 58 214-223 (2019)
  38. Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies. Ognjenović J, Grisshammer R, Subramaniam S. Annu Rev Biomed Eng 21 395-415 (2019)
  39. New approaches towards the understanding of integral membrane proteins: A structural perspective on G protein-coupled receptors. Grisshammer R. Protein Sci 26 1493-1504 (2017)
  40. Isocitrate dehydrogenase variants in cancer - Cellular consequences and therapeutic opportunities. Liu S, Cadoux-Hudson T, Schofield CJ. Curr Opin Chem Biol 57 122-134 (2020)
  41. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Srivastava A, Nagai T, Srivastava A, Miyashita O, Tama F. Int J Mol Sci 19 E3401 (2018)
  42. Computational modeling of RNA 3D structure based on experimental data. Ponce-Salvatierra A, Astha, Merdas K, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM. Biosci Rep 39 BSR20180430 (2019)
  43. Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM. Liu Z, Gutierrez-Vargas C, Wei J, Grassucci RA, Sun M, Espina N, Madison-Antenucci S, Tong L, Frank J. Protein Sci 26 82-92 (2017)
  44. A review of resolution measures and related aspects in 3D Electron Microscopy. Sorzano CO, Vargas J, Otón J, Abrishami V, de la Rosa-Trevín JM, Gómez-Blanco J, Vilas JL, Marabini R, Carazo JM. Prog Biophys Mol Biol 124 1-30 (2017)
  45. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Serna M. Front Mol Biosci 6 33 (2019)
  46. Multiple Forms of Glutamate Dehydrogenase in Animals: Structural Determinants and Physiological Implications. Bunik V, Artiukhov A, Aleshin V, Mkrtchyan G. Biology (Basel) 5 E53 (2016)
  47. Structural biology of G protein-coupled receptors: new opportunities from XFELs and cryoEM. Ishchenko A, Gati C, Cherezov V. Curr Opin Struct Biol 51 44-52 (2018)
  48. Challenges and approaches to predicting RNA with multiple functional structures. Schroeder SJ. RNA 24 1615-1624 (2018)
  49. Cryo-electron Microscopy Analysis of Structurally Heterogeneous Macromolecular Complexes. Jonić S. Comput Struct Biotechnol J 14 385-390 (2016)
  50. Electron Cryo-microscopy as a Tool for Structure-Based Drug Development. Merino F, Raunser S. Angew Chem Int Ed Engl 56 2846-2860 (2017)
  51. Electron Paramagnetic Resonance as a Tool for Studying Membrane Proteins. Sahu ID, Lorigan GA. Biomolecules 10 E763 (2020)
  52. Glutaminase inhibitors: a patent review. Wu C, Chen L, Jin S, Li H. Expert Opin Ther Pat 28 823-835 (2018)
  53. Regulatory mechanisms of ryanodine receptor/Ca2+ release channel revealed by recent advancements in structural studies. Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. J Muscle Res Cell Motil 42 291-304 (2021)
  54. Structural Aspects of the Allergen-Antibody Interaction. Pomés A, Mueller GA, Chruszcz M. Front Immunol 11 2067 (2020)
  55. Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Murin CD. Front Immunol 11 1635 (2020)
  56. Advances in high-resolution cryo-EM of oligomeric enzymes. Vonck J, Mills DJ. Curr Opin Struct Biol 46 48-54 (2017)
  57. Never at rest: insights into the conformational dynamics of ion channels from cryo-electron microscopy. Lau C, Hunter MJ, Stewart A, Perozo E, Vandenberg JI. J Physiol 596 1107-1119 (2018)
  58. Protein Promiscuity in H2O2 Signaling. Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Antioxid Redox Signal 30 1285-1324 (2019)
  59. Seeing is believing: our evolving view of kinetochore structure, composition, and assembly. Hamilton G, Dimitrova Y, Davis TN. Curr Opin Cell Biol 60 44-52 (2019)
  60. Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Panter F, Bader CD, Müller R. Chem Sci 12 5994-6010 (2021)
  61. Lipid environment of membrane proteins in cryo-EM based structural analysis. Mio K, Sato C. Biophys Rev 10 307-316 (2018)
  62. Revisiting the Structure of Hemoglobin and Myoglobin with Cryo-Electron Microscopy. Khoshouei M, Danev R, Plitzko JM, Baumeister W. J Mol Biol 429 2611-2618 (2017)
  63. Structures of biomolecular complexes by combination of NMR and cryoEM methods. Cuniasse P, Tavares P, Orlova EV, Zinn-Justin S. Curr Opin Struct Biol 43 104-113 (2017)
  64. The 2017 Nobel Prize in Chemistry: cryo-EM comes of age. Shen PS. Anal Bioanal Chem 410 2053-2057 (2018)
  65. The PGC-1/ERR network and its role in precision oncology. De Vitto H, Bode AM, Dong Z. NPJ Precis Oncol 3 9 (2019)
  66. While the revolution will not be crystallized, biochemistry reigns supreme. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. Protein Sci 26 69-81 (2017)
  67. CryoEM-based hybrid modeling approaches for structure determination. Cassidy CK, Himes BA, Luthey-Schulten Z, Zhang P. Curr Opin Microbiol 43 14-23 (2018)
  68. Diacylglycerol kinases: Relationship to other lipid kinases. Ma Q, Gabelli SB, Raben DM. Adv Biol Regul 71 104-110 (2019)
  69. Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target. Janero DR, Thakur GA. Expert Opin Drug Discov 11 1223-1237 (2016)
  70. Selective Modulation of Dynamic Protein Complexes. Garlick JM, Mapp AK. Cell Chem Biol 27 986-997 (2020)
  71. Advances in methods for atomic resolution macromolecular structure determination. Thompson MC, Yeates TO, Rodriguez JA. F1000Res 9 F1000 Faculty Rev-667 (2020)
  72. Development of imaging scaffolds for cryo-electron microscopy. Yeates TO, Agdanowski MP, Liu Y. Curr Opin Struct Biol 60 142-149 (2020)
  73. Recent advances of IDH1 mutant inhibitor in cancer therapy. Tian W, Zhang W, Wang Y, Jin R, Wang Y, Guo H, Tang Y, Yao X. Front Pharmacol 13 982424 (2022)
  74. CENP-A nucleosome-a chromatin-embedded pedestal for the centromere: lessons learned from structural biology. Ali-Ahmad A, Sekulić N. Essays Biochem 64 205-221 (2020)
  75. Targeting protein-protein interactions in the DNA damage response pathways for cancer chemotherapy. McPherson KS, Korzhnev DM. RSC Chem Biol 2 1167-1195 (2021)
  76. Visualization of biological macromolecules at near-atomic resolution: cryo-electron microscopy comes of age. Mitra AK. Acta Crystallogr F Struct Biol Commun 75 3-11 (2019)
  77. Contributions and Future Directions for Structural Biology in the Study of Allergens. Mueller GA. Int Arch Allergy Immunol 174 57-66 (2017)
  78. Effects of radiation damage in studies of protein-DNA complexes by cryo-EM. Mishyna M, Volokh O, Danilova Y, Gerasimova N, Pechnikova E, Sokolova OS. Micron 96 57-64 (2017)
  79. Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model. Kim DN, Sanbonmatsu KY. Biosci Rep 37 BSR20170072 (2017)
  80. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Microsc Microanal 24 406-419 (2018)
  81. Higher-order structure of the 30-nm chromatin fiber revealed by cryo-EM. Zhu P, Li G. IUBMB Life 68 873-878 (2016)
  82. Research journey of respirasome. Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Protein Cell 11 318-338 (2020)
  83. Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology. Mizohata E, Nakane T, Fukuda Y, Nango E, Iwata S. Biophys Rev 10 209-218 (2018)
  84. Advances in phase plate cryo-EM imaging of DNA and nucleosomes. Chua EYD, Sandin S. Nucleus 8 275-278 (2017)
  85. Computational membrane biophysics: From ion channel interactions with drugs to cellular function. Miranda WE, Ngo VA, Perissinotti LL, Noskov SY. Biochim Biophys Acta Proteins Proteom 1865 1643-1653 (2017)
  86. Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination. Xue H, Zhang M, Liu J, Wang J, Ren G. Front Chem 10 889203 (2022)
  87. Interpretation of medium resolution cryoEM maps of multi-protein complexes. Casañal A, Shakeel S, Passmore LA. Curr Opin Struct Biol 58 166-174 (2019)
  88. Miniaturizing EM Sample Preparation: Opportunities, Challenges, and "Visual Proteomics". Arnold SA, Müller SA, Schmidli C, Syntychaki A, Rima L, Chami M, Stahlberg H, Goldie KN, Braun T. Proteomics 18 e1700176 (2018)
  89. Structural Biology and Electron Microscopy of the Autophagy Molecular Machinery. Lai LTF, Ye H, Zhang W, Jiang L, Lau WCY. Cells 8 E1627 (2019)
  90. X-ray free electron laser single-particle analysis for biological systems. Miyashita O, Joti Y. Curr Opin Struct Biol 43 163-169 (2017)
  91. Current Approaches in Supersecondary Structures Investigation. Rudnev VR, Kulikova LI, Nikolsky KS, Malsagova KA, Kopylov AT, Kaysheva AL. Int J Mol Sci 22 11879 (2021)
  92. Electron cryomicroscopy as a powerful tool in biomedical research. Quentin D, Raunser S. J Mol Med (Berl) 96 483-493 (2018)
  93. Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Leigh KE, Modis Y. Interface Focus 11 20210019 (2021)
  94. Macromolecular crystallography using microcrystal electron diffraction. Clabbers MTB, Xu H. Acta Crystallogr D Struct Biol 77 313-324 (2021)
  95. Opening the Strands of Replication Origins-Still an Open Question. Jha JK, Ramachandran R, Chattoraj DK. Front Mol Biosci 3 62 (2016)
  96. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport. Howard RJ, Carnevale V, Delemotte L, Hellmich UA, Rothberg BS. Biochim Biophys Acta Biomembr 1860 927-942 (2018)
  97. Role of integrative structural biology in understanding transcriptional initiation. Trnka MJ, Pellarin R, Robinson PJ. Methods 159-160 4-22 (2019)
  98. Structural Analysis of Recent Allergen-Antibody Complexes and Future Directions. Mueller GA, Min J, Foo ACY, Pomés A, Pedersen LC. Curr Allergy Asthma Rep 19 17 (2019)
  99. Biophysical Techniques for Target Validation and Drug Discovery in Transcription-Targeted Therapy. Moustaqil M, Gambin Y, Sierecki E. Int J Mol Sci 21 E2301 (2020)
  100. Machine learning and protein allostery. Xiao S, Verkhivker GM, Tao P. Trends Biochem Sci 48 375-390 (2023)
  101. NMR Studies of Retroviral Genome Packaging. Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O'Hern CT, Singh K, Swanson C, Summers MF, Yasin S. Viruses 12 E1115 (2020)
  102. Understanding pre-mRNA splicing through crystallography. Espinosa S, Zhang L, Li X, Zhao R. Methods 125 55-62 (2017)
  103. Advances in structure determination by cryo-EM to unravel membrane-spanning pore formation. Scott H, Huang W, Bann JG, Taylor DJ. Protein Sci 27 1544-1556 (2018)
  104. Cryo-EM as a powerful tool for drug discovery: recent structural based studies of SARS-CoV-2. Kim HU, Jung HS. Appl Microsc 51 13 (2021)
  105. Cryo-EM structures of coagulation factors. Di Cera E, Mohammed BM, Pelc LA, Stojanovski BM. Res Pract Thromb Haemost 6 e12830 (2022)
  106. From Deep Mutational Mapping of Allosteric Protein Landscapes to Deep Learning of Allostery and Hidden Allosteric Sites: Zooming in on "Allosteric Intersection" of Biochemical and Big Data Approaches. Verkhivker G, Alshahrani M, Gupta G, Xiao S, Tao P. Int J Mol Sci 24 7747 (2023)
  107. Mutated Isocitrate Dehydrogenase (mIDH) as Target for PET Imaging in Gliomas. Neumaier F, Zlatopolskiy BD, Neumaier B. Molecules 28 2890 (2023)
  108. The current role and evolution of X-ray crystallography in drug discovery and development. Bijak V, Szczygiel M, Lenkiewicz J, Gucwa M, Cooper DR, Murzyn K, Minor W. Expert Opin Drug Discov 18 1221-1230 (2023)
  109. The role of small-angle scattering in structure-based screening applications. Chen PC, Hennig J. Biophys Rev 10 1295-1310 (2018)
  110. The young person's guide to the PDB. Minor W, Dauter Z, Jaskolski M. Postepy Biochem 62 242-249 (2016)
  111. LRRK2 Structure-Based Activation Mechanism and Pathogenesis. Zhang X, Kortholt A. Biomolecules 13 612 (2023)
  112. Microbiology catches the cryo-EM bug. Earl LA, Falconieri V, Subramaniam S. Curr Opin Microbiol 43 199-207 (2018)
  113. Nanomedicine for drug resistant pathogens and COVID-19 using mushroom nanocomposite inspired with bacteriocin - A review. Srinivash M, Krishnamoorthi R, Mahalingam PU, Malaikozhundan B, Bharathakumar S, Gurushankar K, Dhanapal K, Karuppa Samy K, Babu Perumal A. Inorg Chem Commun 152 110682 (2023)
  114. Application of Monolayer Graphene and Its Derivative in Cryo-EM Sample Preparation. Wu K, Wu D, Zhu L, Wu Y. Int J Mol Sci 22 8940 (2021)
  115. Biophysics is reshaping our perception of the epigenome: from DNA-level to high-throughput studies. Kanapeckaitė A, Burokienė N, Mažeikienė A, Cottrell GS, Widera D. Biophys Rep (N Y) 1 100028 (2021)
  116. Chemical Crosslinking-Mass Spectrometry (CXL-MS) for Proteomics, Antibody-Drug Conjugates (ADCs) and Cryo-Electron Microscopy (cryo-EM). Pal S, Ganesan K, Eswaran S. IUBMB Life 70 947-960 (2018)
  117. Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. Sinha A, Sangeet S, Roy S. ACS Omega 8 23283-23304 (2023)
  118. Formation of Self-Assembled Mesophases During Lipid Digestion. Pham AC, Clulow AJ, Boyd BJ. Front Cell Dev Biol 9 657886 (2021)

Articles citing this publication (115)

  1. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH. Elife 7 e42166 (2018)
  2. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Bepler T, Kelley K, Noble AJ, Berger B. Nat Commun 11 5208 (2020)
  3. Atomic model for the dimeric FO region of mitochondrial ATP synthase. Guo H, Bueler SA, Rubinstein JL. Science 358 936-940 (2017)
  4. Focus: The interface between data collection and data processing in cryo-EM. Biyani N, Righetto RD, McLeod R, Caujolle-Bert D, Castano-Diez D, Goldie KN, Stahlberg H. J Struct Biol 198 124-133 (2017)
  5. Model-based local density sharpening of cryo-EM maps. Jakobi AJ, Wilmanns M, Sachse C. Elife 6 e27131 (2017)
  6. Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Khoshouei M, Radjainia M, Baumeister W, Danev R. Nat Commun 8 16099 (2017)
  7. Analysis of Global and Site-Specific Radiation Damage in Cryo-EM. Hattne J, Shi D, Glynn C, Zee CT, Gallagher-Jones M, Martynowycz MW, Rodriguez JA, Gonen T. Structure 26 759-766.e4 (2018)
  8. High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Herzik MA, Wu M, Lander GC. Nat Commun 10 1032 (2019)
  9. Reducing effects of particle adsorption to the air-water interface in cryo-EM. Noble AJ, Wei H, Dandey VP, Zhang Z, Tan YZ, Potter CS, Carragher B. Nat Methods 15 793-795 (2018)
  10. Achieving better-than-3-Å resolution by single-particle cryo-EM at 200 keV. Herzik MA, Wu M, Lander GC. Nat Methods 14 1075-1078 (2017)
  11. RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps. Frenz B, Walls AC, Egelman EH, Veesler D, DiMaio F. Nat Methods 14 797-800 (2017)
  12. Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150. Yu X, Jih J, Jiang J, Zhou ZH. Science 356 eaam6892 (2017)
  13. The cryo-EM structure of the SF3b spliceosome complex bound to a splicing modulator reveals a pre-mRNA substrate competitive mechanism of action. Finci LI, Zhang X, Huang X, Zhou Q, Tsai J, Teng T, Agrawal A, Chan B, Irwin S, Karr C, Cook A, Zhu P, Reynolds D, Smith PG, Fekkes P, Buonamici S, Larsen NA. Genes Dev 32 309-320 (2018)
  14. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Zhang D, Zhu Y, Liu L, Ying X, Hsiung CE, Sougrat R, Li K, Han Y. Science 359 675-679 (2018)
  15. Routine determination of ice thickness for cryo-EM grids. Rice WJ, Cheng A, Noble AJ, Eng ET, Kim LY, Carragher B, Potter CS. J Struct Biol 204 38-44 (2018)
  16. Single particle cryo-EM reconstruction of 52 kDa streptavidin at 3.2 Angstrom resolution. Fan X, Wang J, Zhang X, Yang Z, Zhang JC, Zhao L, Peng HL, Lei J, Wang HW. Nat Commun 10 2386 (2019)
  17. Atomic Resolution Cryo-EM Structure of β-Galactosidase. Bartesaghi A, Aguerrebere C, Falconieri V, Banerjee S, Earl LA, Zhu X, Grigorieff N, Milne JLS, Sapiro G, Wu X, Subramaniam S. Structure 26 848-856.e3 (2018)
  18. Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Zhu D, Wang X, Fang Q, Van Etten JL, Rossmann MG, Rao Z, Zhang X. Nat Commun 9 1552 (2018)
  19. Sub-2 Å Ewald curvature corrected structure of an AAV2 capsid variant. Tan YZ, Aiyer S, Mietzsch M, Hull JA, McKenna R, Grieger J, Samulski RJ, Baker TS, Agbandje-McKenna M, Lyumkis D. Nat Commun 9 3628 (2018)
  20. Laser phase plate for transmission electron microscopy. Schwartz O, Axelrod JJ, Campbell SL, Turnbaugh C, Glaeser RM, Müller H. Nat Methods 16 1016-1020 (2019)
  21. Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. Liu Y, Gonen S, Gonen T, Yeates TO. Proc Natl Acad Sci U S A 115 3362-3367 (2018)
  22. A 3.8 Å resolution cryo-EM structure of a small protein bound to an imaging scaffold. Liu Y, Huynh DT, Yeates TO. Nat Commun 10 1864 (2019)
  23. Variations on Negative Stain Electron Microscopy Methods: Tools for Tackling Challenging Systems. Scarff CA, Fuller MJG, Thompson RF, Iadanza MG. J Vis Exp (2018)
  24. X-rays in the Cryo-Electron Microscopy Era: Structural Biology's Dynamic Future. Shoemaker SC, Ando N. Biochemistry 57 277-285 (2018)
  25. A Multi-model Approach to Assessing Local and Global Cryo-EM Map Quality. Herzik MA, Fraser JS, Lander GC. Structure 27 344-358.e3 (2019)
  26. Trends in the Electron Microscopy Data Bank (EMDB). Patwardhan A. Acta Crystallogr D Struct Biol 73 503-508 (2017)
  27. A 10-year meta-analysis of membrane protein structural biology: Detergents, membrane mimetics, and structure determination techniques. Choy BC, Cater RJ, Mancia F, Pryor EE. Biochim Biophys Acta Biomembr 1863 183533 (2021)
  28. An Improved Strategy for Fluorescent Tagging of Membrane Proteins for Overexpression and Purification in Mammalian Cells. Rana MS, Wang X, Banerjee A. Biochemistry 57 6741-6751 (2018)
  29. How Cryo-EM Became so Hot. Cheng Y, Glaeser RM, Nogales E. Cell 171 1229-1231 (2017)
  30. Molecular mechanisms of isocitrate dehydrogenase 1 (IDH1) mutations identified in tumors: The role of size and hydrophobicity at residue 132 on catalytic efficiency. Avellaneda Matteo D, Grunseth AJ, Gonzalez ER, Anselmo SL, Kennedy MA, Moman P, Scott DA, Hoang A, Sohl CD. J Biol Chem 292 7971-7983 (2017)
  31. Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV. Wu M, Lander GC, Herzik MA. J Struct Biol X 4 100020 (2020)
  32. Structure of the 70S ribosome from human pathogen Staphylococcus aureus. Khusainov I, Vicens Q, Bochler A, Grosse F, Myasnikov A, Ménétret JF, Chicher J, Marzi S, Romby P, Yusupova G, Yusupov M, Hashem Y. Nucleic Acids Res 44 10491-10504 (2016)
  33. qFit-ligand Reveals Widespread Conformational Heterogeneity of Drug-Like Molecules in X-Ray Electron Density Maps. van Zundert GCP, Hudson BM, de Oliveira SHP, Keedy DA, Fonseca R, Heliou A, Suresh P, Borrelli K, Day T, Fraser JS, van den Bedem H. J Med Chem 61 11183-11198 (2018)
  34. High-Resolution Cryo-EM Maps and Models: A Crystallographer's Perspective. Wlodawer A, Li M, Dauter Z. Structure 25 1589-1597.e1 (2017)
  35. Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme. Zhang Z, Liang WG, Bailey LJ, Tan YZ, Wei H, Wang A, Farcasanu M, Woods VA, McCord LA, Lee D, Shang W, Deprez-Poulain R, Deprez B, Liu DR, Koide A, Koide S, Kossiakoff AA, Li S, Carragher B, Potter CS, Tang WJ. Elife 7 e33572 (2018)
  36. On the interpretation of electron microscopic maps of biological macromolecules. Wang J, Moore PB. Protein Sci 26 122-129 (2017)
  37. Single-particle cryo-electron microscopy: Mathematical theory, computational challenges, and opportunities. Bendory T, Bartesaghi A, Singer A. IEEE Signal Process Mag 37 58-76 (2020)
  38. EMBuilder: A Template Matching-based Automatic Model-building Program for High-resolution Cryo-Electron Microscopy Maps. Zhou N, Wang H, Wang J. Sci Rep 7 2664 (2017)
  39. Low-dose phase retrieval of biological specimens using cryo-electron ptychography. Zhou L, Song J, Kim JS, Pei X, Huang C, Boyce M, Mendonça L, Clare D, Siebert A, Allen CS, Liberti E, Stuart D, Pan X, Nellist PD, Zhang P, Kirkland AI, Wang P. Nat Commun 11 2773 (2020)
  40. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Coscia F, Estrozi LF, Hans F, Malet H, Noirclerc-Savoye M, Schoehn G, Petosa C. Sci Rep 6 30909 (2016)
  41. CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations. Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon IL, Gronenborn AM, Polenova T, Zhang P. J Phys Chem B 121 3853-3863 (2017)
  42. Letter The democratization of cryo-EM. Stuart DI, Subramaniam S, Abrescia NG. Nat Methods 13 607-608 (2016)
  43. Benchmarking cryo-EM Single Particle Analysis Workflow. Kim LY, Rice WJ, Eng ET, Kopylov M, Cheng A, Raczkowski AM, Jordan KD, Bobe D, Potter CS, Carragher B. Front Mol Biosci 5 50 (2018)
  44. 1.8 Å resolution structure of β-galactosidase with a 200 kV CRYO ARM electron microscope. Merk A, Fukumura T, Zhu X, Darling JE, Grisshammer R, Ognjenovic J, Subramaniam S. IUCrJ 7 639-643 (2020)
  45. A particle-filter framework for robust cryo-EM 3D reconstruction. Hu M, Yu H, Gu K, Wang Z, Ruan H, Wang K, Ren S, Li B, Gan L, Xu S, Yang G, Shen Y, Li X. Nat Methods 15 1083-1089 (2018)
  46. AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images. Al-Azzawi A, Ouadou A, Tanner JJ, Cheng J. BMC Bioinformatics 20 326 (2019)
  47. On the appearance of carboxylates in electrostatic potential maps. Wang J. Protein Sci 26 396-402 (2017)
  48. Application of the NZ-1 Fab as a crystallization chaperone for PA tag-inserted target proteins. Tamura R, Oi R, Akashi S, Kaneko MK, Kato Y, Nogi T. Protein Sci 28 823-836 (2019)
  49. Diffracted X-ray Blinking Tracks Single Protein Motions. Sekiguchi H, Kuramochi M, Ikezaki K, Okamura Y, Yoshimura K, Matsubara K, Chang JW, Ohta N, Kubo T, Mio K, Suzuki Y, Chavas LMG, Sasaki YC. Sci Rep 8 17090 (2018)
  50. Construction of novel repeat proteins with rigid and predictable structures using a shared helix method. Youn SJ, Kwon NY, Lee JH, Kim JH, Choi J, Lee H, Lee JO. Sci Rep 7 2595 (2017)
  51. Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis. Liu XR, Rempel DL, Gross ML. Nat Protoc 15 3942-3970 (2020)
  52. Targeted therapy for fusion-driven high-risk acute leukemia. Pikman Y, Stegmaier K. Blood 132 1241-1247 (2018)
  53. Using cryo-EM to understand antimycobacterial resistance in the catalase-peroxidase (KatG) from Mycobacterium tuberculosis. Munir A, Wilson MT, Hardwick SW, Chirgadze DY, Worrall JAR, Blundell TL, Chaplin AK. Structure 29 899-912.e4 (2021)
  54. Crystal structures of mono- and bi-specific diabodies and reduction of their structural flexibility by introduction of disulfide bridges at the Fv interface. Kim JH, Song DH, Youn SJ, Kim JW, Cho G, Kim SC, Lee H, Jin MS, Lee JO. Sci Rep 6 34515 (2016)
  55. High-power near-concentric Fabry-Perot cavity for phase contrast electron microscopy. Turnbaugh C, Axelrod JJ, Campbell SL, Dioquino JY, Petrov PN, Remis J, Schwartz O, Yu Z, Cheng Y, Cheng Y, Glaeser RM, Mueller H. Rev Sci Instrum 92 053005 (2021)
  56. Mass-selective and ice-free electron cryomicroscopy protein sample preparation via native electrospray ion-beam deposition. Esser TK, Böhning J, Fremdling P, Agasid MT, Costin A, Fort K, Konijnenberg A, Gilbert JD, Bahm A, Makarov A, Robinson CV, Benesch JLP, Baker L, Bharat TAM, Gault J, Rauschenbach S. PNAS Nexus 1 pgac153 (2022)
  57. Refinement of organic crystal structures with multipolar electron scattering factors. Gruza B, Chodkiewicz ML, Krzeszczakowska J, Dominiak PM. Acta Crystallogr A Found Adv 76 92-109 (2020)
  58. The first single particle analysis Map Challenge: A summary of the assessments. Heymann JB, Marabini R, Kazemi M, Sorzano COS, Holmdahl M, Mendez JH, Stagg SM, Jonic S, Palovcak E, Armache JP, Zhao J, Cheng Y, Pintilie G, Chiu W, Patwardhan A, Carazo JM. J Struct Biol 204 291-300 (2018)
  59. The mechanism of kinesin inhibition by kinesin-binding protein. Atherton J, Hummel JJ, Olieric N, Locke J, Peña A, Rosenfeld SS, Steinmetz MO, Hoogenraad CC, Moores CA. Elife 9 e61481 (2020)
  60. Oral Mucosa Could Be an Infectious Target of SARS-CoV-2. Okui T, Matsuda Y, Karino M, Hideshima K, Kanno T. Healthcare (Basel) 9 1068 (2021)
  61. Resistance to the isocitrate dehydrogenase 1 mutant inhibitor ivosidenib can be overcome by alternative dimer-interface binding inhibitors. Reinbold R, Hvinden IC, Rabe P, Herold RA, Finch A, Wood J, Morgan M, Staudt M, Clifton IJ, Armstrong FA, McCullagh JSO, Redmond J, Bardella C, Abboud MI, Schofield CJ. Nat Commun 13 4785 (2022)
  62. Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1. Liu S, Abboud MI, John T, Mikhailov V, Hvinden I, Walsby-Tickle J, Liu X, Pettinati I, Cadoux-Hudson T, McCullagh JSO, Schofield CJ. Commun Biol 4 1243 (2021)
  63. Application of antihelix antibodies in protein structure determination. Kim JW, Kim S, Lee H, Cho G, Kim SC, Lee H, Jin MS, Lee JO. Proc Natl Acad Sci U S A 116 17786-17791 (2019)
  64. Devitrification reduces beam-induced movement in cryo-EM. Wieferig JP, Mills DJ, Kühlbrandt W. IUCrJ 8 186-194 (2021)
  65. A Super-Clustering Approach for Fully Automated Single Particle Picking in Cryo-EM. Al-Azzawi A, Ouadou A, Tanner JJ, Cheng J. Genes (Basel) 10 E666 (2019)
  66. CERES: a cryo-EM re-refinement system for continuous improvement of deposited models. Liebschner D, Afonine PV, Moriarty NW, Poon BK, Chen VB, Adams PD. Acta Crystallogr D Struct Biol 77 48-61 (2021)
  67. Elucidating the structural basis for differing enzyme inhibitor potency by cryo-EM. Rawson S, Bisson C, Hurdiss DL, Fazal A, McPhillie MJ, Sedelnikova SE, Baker PJ, Rice DW, Muench SP. Proc Natl Acad Sci U S A 115 1795-1800 (2018)
  68. Inhibitor potency varies widely among tumor-relevant human isocitrate dehydrogenase 1 mutants. Avellaneda Matteo D, Wells GA, Luna LA, Grunseth AJ, Zagnitko O, Scott DA, Hoang A, Luthra A, Swairjo MA, Schiffer JM, Sohl CD. Biochem J 475 3221-3238 (2018)
  69. Near-native state imaging by cryo-soft-X-ray tomography reveals remodelling of multiple cellular organelles during HSV-1 infection. Nahas KL, Connor V, Scherer KM, Kaminski CF, Harkiolaki M, Crump CM, Graham SC. PLoS Pathog 18 e1010629 (2022)
  70. Atomic-resolution three-dimensional hydration structures on a heterogeneously charged surface. Umeda K, Zivanovic L, Kobayashi K, Ritala J, Kominami H, Spijker P, Foster AS, Yamada H. Nat Commun 8 2111 (2017)
  71. Estimating the effect of finite depth of field in single-particle cryo-EM. Downing KH, Glaeser RM. Ultramicroscopy 184 94-99 (2018)
  72. cryoEM-Guided Development of Antibiotics for Drug-Resistant Bacteria. Belousoff MJ, Venugopal H, Wright A, Seoner S, Stuart I, Stubenrauch C, Bamert RS, Lupton DW, Lithgow T. ChemMedChem 14 527-531 (2019)
  73. A statistical model for improved membrane protein expression using sequence-derived features. Saladi SM, Javed N, Müller A, Clemons WM. J Biol Chem 293 4913-4927 (2018)
  74. Advances in Structural Biology and the Application to Biological Filament Systems. Popp D, Koh F, Scipion CPM, Ghoshdastider U, Narita A, Holmes KC, Robinson RC. Bioessays 40 e1700213 (2018)
  75. Prediction of ligand modulation patterns on membrane receptors via lysine reactivity profiling. Zhou Y, Liu Z, Zhang J, Dou T, Chen J, Ge G, Zhu S, Wang F. Chem Commun (Camb) 55 4311-4314 (2019)
  76. Uniform thin ice on ultraflat graphene for high-resolution cryo-EM. Zheng L, Liu N, Gao X, Zhu W, Liu K, Wu C, Yan R, Zhang J, Gao X, Yao Y, Deng B, Xu J, Lu Y, Liu Z, Li M, Wei X, Wang HW, Peng H. Nat Methods 20 123-130 (2023)
  77. An acidic residue buried in the dimer interface of isocitrate dehydrogenase 1 (IDH1) helps regulate catalysis and pH sensitivity. Luna LA, Lesecq Z, White KA, Hoang A, Scott DA, Zagnitko O, Bobkov AA, Barber DL, Schiffer JM, Isom DG, Sohl CD. Biochem J 477 2999-3018 (2020)
  78. Cryo-electron microscopy structure of a human PRMT5:MEP50 complex. Timm DE, Bowman V, Madsen R, Rauch C. PLoS One 13 e0193205 (2018)
  79. In-Line Holography in Transmission Electron Microscopy for the Atomic Resolution Imaging of Single Particle of Radiation-Sensitive Matter. Carlino E. Materials (Basel) 13 E1413 (2020)
  80. On contribution of known atomic partial charges of protein backbone in electrostatic potential density maps. Wang J. Protein Sci 26 1098-1104 (2017)
  81. Single-Particle Cryo-EM of Membrane Proteins. Januliene D, Moeller A. Methods Mol Biol 2302 153-178 (2021)
  82. Determining Complex Structures using Docking Method with Single Particle Scattering Data. Wang H, Liu H. Front Mol Biosci 4 23 (2017)
  83. Electron Diffraction on Flash-Frozen Cowlesite Reveals the Structure of the First Two-Dimensional Natural Zeolite. Mugnaioli E, Lanza AE, Bortolozzi G, Righi L, Merlini M, Cappello V, Marini L, Athanassiou A, Gemmi M. ACS Cent Sci 6 1578-1586 (2020)
  84. Multi-curve fitting and tubulin-lattice signal removal for structure determination of large microtubule-based motors. Chai P, Rao Q, Zhang K. J Struct Biol 214 107897 (2022)
  85. Small molecule cores demonstrate non-competitive inhibition of lactate dehydrogenase. Andrews BA, Dyer RB. Medchemcomm 9 1369-1376 (2018)
  86. Transport-exclusion pharmacology to localize lactate dehydrogenase activity within cells. Niu X, Chen YJ, Crawford PA, Patti GJ. Cancer Metab 6 19 (2018)
  87. Allosteric discrimination at the NADH/ADP regulatory site of glutamate dehydrogenase. Nassar OM, Wong KY, Lynch GC, Smith TJ, Pettitt BM. Protein Sci 28 2080-2088 (2019)
  88. Cryo Electron Microscopy of TRP Channels. Samanta A, Hughes TET, Moiseenkova-Bell VY. Methods Mol Biol 1987 39-50 (2019)
  89. ELI trifocal microscope: a precise system to prepare target cryo-lamellae for in situ cryo-ET study. Li S, Wang Z, Jia X, Niu T, Zhang J, Yin G, Zhang X, Zhu Y, Ji G, Sun F. Nat Methods 20 276-283 (2023)
  90. Fast and automatic identification of particle tilt pairs based on Delaunay triangulation. Vilas JL, Navas J, Gómez-Blanco J, de la Rosa-Trevín JM, Melero R, Peschiera I, Ferlenghi I, Cuenca J, Marabini R, Carazo JM, Vargas J, Sorzano COS. J Struct Biol 196 525-533 (2016)
  91. Glutamate dehydrogenase: Structure of a hyperinsulinism mutant, corrections to the atomic model, and insights into a regulatory site. Nassar OM, Li C, Stanley CA, Pettitt BM, Smith TJ. Proteins 87 41-50 (2019)
  92. Non-Covalent Interactions of a Neuroprotective Peptide Revealed by Photodissociative Cross-Linking in the Gas Phase. Liu Y, Ramey Z, Tureček F. Chemistry 24 9259-9263 (2018)
  93. The development of cryo-EM and how it has advanced microbiology. Oikonomou CM, Jensen GJ. Nat Microbiol 2 1577-1579 (2017)
  94. Water Networks and Correlated Motions in Mutant Isocitrate Dehydrogenase 1 (IDH1) Are Critical for Allosteric Inhibitor Binding and Activity. Chambers JM, Miller W, Quichocho G, Upadhye V, Matteo DA, Bobkov AA, Sohl CD, Schiffer JM. Biochemistry 59 479-490 (2020)
  95. Characterization of Glycoproteins with the Immunoglobulin Fold by X-Ray Crystallography and Biophysical Techniques. Ereño-Orbea J, Sicard T, Cui H, Akula I, Julien JP. J Vis Exp (2018)
  96. Comparison of side-chain dispersion in protein structures determined by cryo-EM and X-ray crystallography. Ravikumar A, Gopnarayan MN, Subramaniam S, Srinivasan N. IUCrJ 9 98-103 (2022)
  97. Structure, Function, and Thermodynamics of Lactate Dehydrogenases from Humans and the Malaria Parasite P. falciparum. Khrapunov S, Waterman A, Persaud R, Chang EP. Biochemistry 60 3582-3595 (2021)
  98. [The resolution revolution in cryo-electron microscopy]. Neumann E, Farias Estrozi L, Effantin G, Breyton C, Schoehn G. Med Sci (Paris) 33 1111-1117 (2017)
  99. Characterization of Membrane Proteins Using Cryo-Electron Microscopy. Carvalho V, Pronk JW, Engel AH. Curr Protoc Protein Sci 94 e72 (2018)
  100. Editorial It all clicks together: In silico drug discovery becoming mainstream. Nazarova AL, Katritch V. Clin Transl Med 12 e766 (2022)
  101. Congress Reporting on the future of integrative structural biology ORAU workshop. Hamilton GL, Alper J, Sanabria H. Front Biosci (Landmark Ed) 25 43-68 (2020)
  102. Sample preparation for structural and functional analyses of the STRA6 receptor for retinol-binding protein. Costabile BK, Kim YK, Chen Y, Clarke OB, Quadro L, Mancia F. Methods Enzymol 637 95-117 (2020)
  103. Structural Basis for the Binding of Allosteric Activators Leucine and ADP to Mammalian Glutamate Dehydrogenase. Aleshin VA, Bunik VI, Bruch EM, Bellinzoni M. Int J Mol Sci 23 11306 (2022)
  104. Three-Dimensional Structure of Cytochrome c Nitrite Reductase As Determined by Cryo-Electron Microscopy. Baymukhametov TN, Chesnokov YM, Pichkur EB, Boyko KM, Tikhonova TV, Myasnikov AG, Vasiliev AL, Lipkin AV, Popov VO, Kovalchuk MV. Acta Naturae 10 48-56 (2018)
  105. An electron counting algorithm improves imaging of proteins with low-acceleration-voltage cryo-electron microscope. Zhu D, Shi H, Wu C, Zhang X. Commun Biol 5 321 (2022)
  106. Capturing the Dynamic Conformational Changes of Human Isocitrate Dehydrogenase 1 (IDH1) upon Ligand and Metal Binding Using Hydrogen-Deuterium Exchange Mass Spectrometry. Sabo KA, Albekioni E, Caliger D, Coleman NJ, Thornberg E, Avellaneda Matteo D, Komives EA, Silletti S, Sohl CD. Biochemistry 62 1145-1159 (2023)
  107. Characterization of the T-cell Repertoire after Autologous HSCT in Patients with Ankylosing Spondylitis. Komech EA, Zvyagin IV, Pogorelyy MV, Mamedov IZ, Fedorenko DA, Lebedev YB. Acta Naturae 10 48-57 (2018)
  108. Consensus scoring evaluated using the GPCR-Bench dataset: Reconsidering the role of MM/GBSA. Yau MQ, Loo JSE. J Comput Aided Mol Des 36 427-441 (2022)
  109. CryoEM analysis of small plant biocatalysts at sub-2 Å resolution. Dimos N, Helmer CPO, Chánique AM, Wahl MC, Kourist R, Hilal T, Loll B. Acta Crystallogr D Struct Biol 78 113-123 (2022)
  110. Differentiating Inhibition Selectivity and Binding Affinity of Isocitrate Dehydrogenase 1 Variant Inhibitors. Liu S, Abboud M, Mikhailov V, Liu X, Reinbold R, Schofield CJ. J Med Chem 66 5279-5288 (2023)
  111. Editorial Editorial: Methods in structural biology: Cryo-EM. Sokolova OS. Front Mol Biosci 9 1041373 (2022)
  112. Electron crystallography of chiral and non-chiral small molecules. Zhou W, Bammes B, Mitchell PG, Betz K, Chiu W. Ultramicroscopy 232 113417 (2022)
  113. Prediction of hydrophilic and hydrophobic hydration structure of protein by neural network optimized using experimental data. Sato K, Oide M, Nakasako M. Sci Rep 13 2183 (2023)
  114. Recombinant Production, Reconstruction in Lipid-Protein Nanodiscs, and Electron Microscopy of Full-Length α-Subunit of Human Potassium Channel Kv7.1. Shenkarev ZO, Karlova MG, Kulbatskii DS, Kirpichnikov MP, Lyukmanova EN, Sokolova OS. Biochemistry (Mosc) 83 562-573 (2018)
  115. Wavelet invariants for statistically robust multi-reference alignment. Hirn M, Little A. Inf inference 10 1287-1351 (2021)