5mul Citations

Unusual active site location and catalytic apparatus in a glycoside hydrolase family.

Proc Natl Acad Sci U S A 114 4936-4941 (2017)
Related entries: 5muk, 5mum, 5mvh

Cited: 23 times
EuropePMC logo PMID: 28396425

Abstract

The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on l-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an α-l-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved l-Rha-α1,4-d-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed β-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among β-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, α-l-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed.

Articles - 5mul mentioned but not cited (2)

  1. Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Munoz-Munoz J, Cartmell A, Terrapon N, Henrissat B, Gilbert HJ. Proc Natl Acad Sci U S A 114 4936-4941 (2017)
  2. Structural and functional analysis of gum arabic l-rhamnose-α-1,4-d-glucuronate lyase establishes a novel polysaccharide lyase family. Kondo T, Kichijo M, Maruta A, Nakaya M, Takenaka S, Arakawa T, Fushinobu S, Sakamoto T. J Biol Chem 297 101001 (2021)


Reviews citing this publication (5)

  1. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Microbiol Mol Biol Rev 82 e00029-18 (2018)
  2. Potential Use of Marine Seaweeds as Prebiotics: A Review. Lopez-Santamarina A, Miranda JM, Mondragon ADC, Lamas A, Cardelle-Cobas A, Franco CM, Cepeda A. Molecules 25 E1004 (2020)
  3. Prebiotics from Seaweeds: An Ocean of Opportunity? Cherry P, Yadav S, Strain CR, Allsopp PJ, McSorley EM, Ross RP, Stanton C. Mar Drugs 17 E327 (2019)
  4. Effect of Food Structure and Processing on (Poly)phenol-Gut Microbiota Interactions and the Effects on Human Health. Tomás-Barberán FA, Espín JC. Annu Rev Food Sci Technol 10 221-238 (2019)
  5. High-Throughput Approaches in Carbohydrate-Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Chao L, Jongkees S. Angew Chem Int Ed Engl 58 12750-12760 (2019)

Articles citing this publication (16)