5oyv Citations

High-Throughput Crystallography: Reliable and Efficient Identification of Fragment Hits.

Structure 24 1398-1409 (2016)
Related entries: 5oyq, 5oyr, 5oys, 5oyt, 5oyu, 5oyw, 5oyx, 5oyy, 5oyz, 5oz0, 5oz1, 5oz2, 5oz3, 5oz4, 5oz5, 5oz6, 5oz7, 5oz8, 5oz9, 5oza, 5ozb, 5ozc, 5ozd, 5oze, 5ozf, 5ozg, 5ozh, 5ozi, 5ozj, 5ozk, 5ozl, 5ozm, 5ozn, 5ozo, 5ozp, 5ozq, 5ozr, 5ozs, 5ozt, 5ozu, 5ozv, 5ozw, 5ozx, 5ozy, 5ozz, 5p00, 5p01, 5p02, 5p03, 5p04, 5p05, 5p06, 5p07, 5p08, 5p09, 5p0a, 5p0b, 5p0c, 5p0d, 5p0e, 5p0f, 5p0g, 5p0h, 5p0i, 5p0j, 5p0k, 5p0l, 5p0m, 5p0n, 5p0o, 5p0p, 5p0q, 5p0r, 5p0s, 5p0t, 5p0u, 5p0v, 5p0w, 5p0x, 5p0y, 5p0z, 5p10, 5p11, 5p12, 5p13, 5p14, 5p15, 5p16, 5p17, 5p18, 5p19, 5p1a, 5p1b, 5p1c, 5p1d, 5p1e, 5p1f, 5p1g, 5p1h, 5p1i, 5p1j, 5p1k, 5p1l, 5p1m, 5p1n, 5p1o, 5p1p, 5p1q, 5p1r, 5p1s, 5p1t, 5p1u, 5p1v, 5p1w, 5p1x, 5p1y, 5p1z, 5p20, 5p22, 5p23, 5p24, 5p25, 5p26, 5p27, 5p28, 5p29, 5p2a, 5p2b, 5p2c, 5p2d, 5p2e, 5p2f, 5p2g, 5p2h, 5p2i, 5p2j, 5p2k, 5p2l, 5p2m, 5p2n, 5p2o, 5p2q, 5p2r, 5p2s, 5p2t, 5p2u, 5p2v, 5p2w, 5p2x, 5p2y, 5p2z, 5p30, 5p31, 5p32, 5p33, 5p34, 5p35, 5p36, 5p37, 5p38, 5p39, 5p3a, 5p3b, 5p3c, 5p3d, 5p3e, 5p3f, 5p3g, 5p3h, 5p3i, 5p3j, 5p3k, 5p3l, 5p3m, 5p3n, 5p3o, 5p3p, 5p3q, 5p3r, 5p3s, 5p3t, 5p3u, 5p3v, 5p3w, 5p3x, 5p3y, 5p3z, 5p40, 5p41, 5p42, 5p43, 5p44, 5p45, 5p46, 5p47, 5p48, 5p49, 5p4a, 5p4b, 5p4c, 5p4d, 5p4e, 5p4f, 5p4g, 5p4h, 5p4i, 5p4j, 5p4k, 5p4l, 5p4m, 5p4n, 5p4o, 5p4p, 5p4q, 5p4r, 5p4s, 5p4t, 5p4u, 5p4v, 5p4w, 5p4x, 5p4y, 5p4z, 5p50, 5p51, 5p52, 5p53, 5p54, 5p55, 5p56, 5p57, 5p58, 5p59, 5p5a, 5p5b, 5p5c, 5p5d, 5p5e, 5p5f, 5p5g, 5p5h, 5p5i, 5p5j, 5p5k, 5p5l, 5p5m, 5p5n, 5p5o, 5p5p, 5p5q, 5p5r, 5p5s, 5p5t, 5p5u, 5p5v, 5p5w, 5p5x, 5p5y, 5p5z, 5p60, 5p61, 5p62, 5p63, 5p64, 5p65, 5p66, 5p67, 5p68, 5p69, 5p6a, 5p6b, 5p6c, 5p6d, 5p6e, 5p6f, 5p6g, 5p6h, 5p6i, 5p6j, 5p6k, 5p6l, 5p6m, 5p6n, 5p6o, 5p6p, 5p6q, 5p6r, 5p6s, 5p6t, 5p6u, 5p6v, 5p6w, 5p6x, 5p6y, 5p6z, 5p70, 5p71, 5p72, 5p73, 5p74, 5p75, 5p76, 5p77, 5p78, 5p79, 5p7a, 5p7b, 5p7c, 5p7d, 5p7e, 5p7f, 5p7g, 5p7h, 5p7i, 5p7j, 5p7k, 5p7l, 5p7m, 5p7n, 5p7o, 5p7p, 5p7q, 5p7r, 5p7s, 5p7t, 5p7u, 5p7v, 5p7w, 5p7x, 5p7y, 5p7z, 5p80, 5p81, 5p82, 5p83, 5p84, 5p85, 5p86, 5p87, 5p88, 5p89, 5p8a, 5p8b, 5p8c, 5p8d, 5p8e, 5p8f, 5p8g, 5p8h, 5p8i, 5p8j, 5p8k, 5p8l, 5p8m, 5p8n, 5p8o, 5p8p, 5p8q, 5p8r, 5p8s, 5p8t, 5p8u, 5p8v

Cited: 37 times
EuropePMC logo PMID: 27452405

Abstract

Today the identification of lead structures for drug development often starts from small fragment-like molecules raising the chances to find compounds that successfully pass clinical trials. At the heart of the screening for fragments binding to a specific target, crystallography delivers structural information essential for subsequent drug design. While it is common to search for bound ligands in electron densities calculated directly after an initial refinement cycle, we raise the important question whether this strategy is viable for fragments characterized by low affinities. Here, we describe and provide a collection of high-quality diffraction data obtained from 364 protein crystals treated with diverse fragments. Subsequent data analysis showed that ∼25% of all hits would have been missed without further refining the resulting structures. To enable fast and reliable hit identification, we have designed an automated refinement pipeline that will inspire the development of optimized tools facilitating the successful application of fragment-based methods.

Reviews citing this publication (7)

  1. Current perspectives in fragment-based lead discovery (FBLD). Lamoree B, Hubbard RE. Essays Biochem 61 453-464 (2017)
  2. Application of Fragment-Based Drug Discovery to Versatile Targets. Li Q. Front Mol Biosci 7 180 (2020)
  3. Concepts and Core Principles of Fragment-Based Drug Design. Kirsch P, Hartman AM, Hirsch AKH, Empting M. Molecules 24 E4309 (2019)
  4. Protein X-ray Crystallography and Drug Discovery. Maveyraud L, Mourey L. Molecules 25 E1030 (2020)
  5. Discovery of allosteric binding sites by crystallographic fragment screening. Krojer T, Fraser JS, von Delft F. Curr Opin Struct Biol 65 209-216 (2020)
  6. Emerging Pharmacotherapeutic Strategies to Overcome Undruggable Proteins in Cancer. Lu Y, Yang Y, Zhu G, Zeng H, Fan Y, Guo F, Xu D, Wang B, Chen D, Ge G. Int J Biol Sci 19 3360-3382 (2023)
  7. Structural biology data archiving - where we are and what lies ahead. Kleywegt GJ, Velankar S, Patwardhan A. FEBS Lett 592 2153-2167 (2018)

Articles citing this publication (30)

  1. A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density. Pearce NM, Krojer T, Bradley AR, Collins P, Nowak RP, Talon R, Marsden BD, Kelm S, Shi J, Deane CM, von Delft F. Nat Commun 8 15123 (2017)
  2. Protein Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis tools for large structures. Kinjo AR, Bekker GJ, Suzuki H, Tsuchiya Y, Kawabata T, Ikegawa Y, Nakamura H. Nucleic Acids Res 45 D282-D288 (2017)
  3. Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Schiebel J, Gaspari R, Wulsdorf T, Ngo K, Sohn C, Schrader TE, Cavalli A, Ostermann A, Heine A, Klebe G. Nat Commun 9 3559 (2018)
  4. On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies. Lieske J, Cerv M, Kreida S, Komadina D, Fischer J, Barthelmess M, Fischer P, Pakendorf T, Yefanov O, Mariani V, Seine T, Ross BH, Crosas E, Lorbeer O, Burkhardt A, Lane TJ, Guenther S, Bergtholdt J, Schoen S, Törnroth-Horsefield S, Chapman HN, Meents A. IUCrJ 6 714-728 (2019)
  5. Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening. Lountos GT, Zhao XZ, Kiselev E, Tropea JE, Needle D, Pommier Y, Burke TR, Waugh DS. Nucleic Acids Res 47 10134-10150 (2019)
  6. Pre-clustering data sets using cluster4x improves the signal-to-noise ratio of high-throughput crystallography drug-screening analysis. Ginn HM. Acta Crystallogr D Struct Biol 76 1134-1144 (2020)
  7. Partial-occupancy binders identified by the Pan-Dataset Density Analysis method offer new chemical opportunities and reveal cryptic binding sites. Pearce NM, Bradley AR, Krojer T, Marsden BD, Deane CM, von Delft F. Struct Dyn 4 032104 (2017)
  8. Cytotoxicity and Antimycobacterial Properties of Pyrrolo[1,2-a]quinoline Derivatives: Molecular Target Identification and Molecular Docking Studies. Venugopala KN, Uppar V, Chandrashekharappa S, Abdallah HH, Pillay M, Deb PK, Morsy MA, Aldhubiab BE, Attimarad M, Nair AB, Sreeharsha N, Tratrat C, Yousef Jaber A, Venugopala R, Mailavaram RP, Al-Jaidi BA, Kandeel M, Haroun M, Padmashali B. Antibiotics (Basel) 9 E233 (2020)
  9. A shared vision for macromolecular crystallography over the next five years. Förster A, Schulze-Briese C. Struct Dyn 6 064302 (2019)
  10. EIGER2 hybrid-photon-counting X-ray detectors for advanced synchrotron diffraction experiments. Donath T, Šišak Jung D, Burian M, Radicci V, Zambon P, Fitch AN, Dejoie C, Zhang B, Ruat M, Hanfland M, Kewish CM, van Riessen GA, Naumenko D, Amenitsch H, Bourenkov G, Bricogne G, Chari A, Schulze-Briese C. J Synchrotron Radiat 30 723-738 (2023)
  11. Fast fragment- and compound-screening pipeline at the Swiss Light Source. Kaminski JW, Vera L, Stegmann DP, Vering J, Eris D, Smith KML, Huang CY, Meier N, Steuber J, Wang M, Fritz G, Wojdyla JA, Sharpe ME. Acta Crystallogr D Struct Biol 78 328-336 (2022)
  12. Frag4Lead: growing crystallographic fragment hits by catalog using fragment-guided template docking. Metz A, Wollenhaupt J, Glöckner S, Messini N, Huber S, Barthel T, Merabet A, Gerber HD, Heine A, Klebe G, Weiss MS. Acta Crystallogr D Struct Biol 77 1168-1182 (2021)
  13. FragMAXapp: crystallographic fragment-screening data-analysis and project-management system. Lima GMA, Jagudin E, Talibov VO, Benz LS, Marullo C, Barthel T, Wollenhaupt J, Weiss MS, Mueller U. Acta Crystallogr D Struct Biol 77 799-808 (2021)
  14. Letter Of problems and opportunities-How to treat and how to not treat crystallographic fragment screening data. Weiss MS, Wollenhaupt J, Correy GJ, Fraser JS, Heine A, Klebe G, Krojer T, Thunissen M, Pearce NM. Protein Sci 31 e4391 (2022)
  15. Structural basis for catalysis and substrate specificity of a 3C-like cysteine protease from a mosquito mesonivirus. Kanitz M, Blanck S, Heine A, Gulyaeva AA, Gorbalenya AE, Ziebuhr J, Diederich WE. Virology 533 21-33 (2019)
  16. Structural and dynamical description of the enzymatic reaction of a phosphohexomutase. Stiers KM, Graham AC, Zhu JS, Jakeman DL, Nix JC, Beamer LJ. Struct Dyn 6 024703 (2019)
  17. A False-Positive Screening Hit in Fragment-Based Lead Discovery: Watch out for the Red Herring. Cramer J, Schiebel J, Wulsdorf T, Grohe K, Najbauer EE, Ehrmann FR, Radeva N, Zitzer N, Linne U, Linser R, Heine A, Klebe G. Angew Chem Int Ed Engl 56 1908-1913 (2017)
  18. Binding Adaptation of GS-441524 Diversifies Macro Domains and Downregulates SARS-CoV-2 de-MARylation Capacity. Tsika AC, Gallo A, Fourkiotis NK, Argyriou AI, Sreeramulu S, Löhr F, Rogov VV, Richter C, Linhard V, Gande SL, Altincekic N, Krishnathas R, Elamri I, Schwalbe H, Wollenhaupt J, Weiss MS, Spyroulias GA. J Mol Biol 434 167720 (2022)
  19. A Proof-of-Concept Fragment Screening of a Hit-Validated 96-Compounds Library against Human Carbonic Anhydrase II. Glöckner S, Heine A, Klebe G. Biomolecules 10 E518 (2020)
  20. SAMPL7 protein-ligand challenge: A community-wide evaluation of computational methods against fragment screening and pose-prediction. Grosjean H, Işık M, Aimon A, Mobley D, Chodera J, von Delft F, Biggin PC. J Comput Aided Mol Des 36 291-311 (2022)
  21. Systematic Assessment of Fragment Identification for Multitarget Drug Design. Brunst S, Kramer JS, Kilu W, Heering J, Pollinger J, Hiesinger K, George S, Steinhilber D, Merk D, Proschak E. ChemMedChem 16 1088-1092 (2021)
  22. Crystal polymorphism in fragment-based lead discovery of ligands of the catalytic domain of UGGT, the glycoprotein folding quality control checkpoint. Caputo AT, Ibba R, Le Cornu JD, Darlot B, Hensen M, Lipp CB, Marcianò G, Vasiljević S, Zitzmann N, Roversi P. Front Mol Biosci 9 960248 (2022)
  23. Discovery of novel druggable pockets on polyomavirus VP1 through crystallographic fragment-based screening to develop capsid assembly inhibitors. Osipov EM, Munawar AH, Beelen S, Fearon D, Douangamath A, Wild C, Weeks SD, Van Aerschot A, von Delft F, Strelkov SV. RSC Chem Biol 3 1013-1027 (2022)
  24. Exploring serial crystallography for drug discovery. Dunge A, Phan C, Uwangue O, Bjelcic M, Gunnarsson J, Wehlander G, Käck H, Brändén G. IUCrJ 11 831-842 (2024)
  25. Facilitated crystal handling using a simple device for evaporation reduction in microtiter plates. Barthel T, Huschmann FU, Wallacher D, Feiler CG, Klebe G, Weiss MS, Wollenhaupt J. J Appl Crystallogr 54 376-382 (2021)
  26. Cys.sqlite: A Structured-Information Approach to the Comprehensive Analysis of Cysteine Disulfide Bonds in the Protein Databank. Fobe TL, Kazakov A, Riccardi D. J Chem Inf Model 59 931-943 (2019)
  27. Experiences From Developing Software for Large X-Ray Crystallography-Driven Protein-Ligand Studies. Pearce NM, Skyner R, Krojer T. Front Mol Biosci 9 861491 (2022)
  28. Development of a Crystallographic Screening to Identify Sudan Virus VP40 Ligands. Werner AD, Krapoth N, Norris MJ, Heine A, Klebe G, Saphire EO, Becker S. ACS Omega 9 33193-33203 (2024)
  29. HEIDI: an experiment-management platform enabling high-throughput fragment and compound screening. Metz A, Stegmann DP, Panepucci EH, Buehlmann S, Huang CY, McAuley KE, Wang M, Wojdyla JA, Sharpe ME, Smith KML. Acta Crystallogr D Struct Biol 80 328-335 (2024)
  30. Novel starting points for fragment-based drug design against mycobacterial thioredoxin reductase identified using crystallographic fragment screening. Füsser FT, Wollenhaupt J, Weiss MS, Kümmel D, Koch O. Acta Crystallogr D Struct Biol 79 857-865 (2023)