5qcr Citations

D3R grand challenge 4: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies.

Abstract

The Drug Design Data Resource (D3R) aims to identify best practice methods for computer aided drug design through blinded ligand pose prediction and affinity challenges. Herein, we report on the results of Grand Challenge 4 (GC4). GC4 focused on proteins beta secretase 1 and Cathepsin S, and was run in an analogous manner to prior challenges. In Stage 1, participant ability to predict the pose and affinity of BACE1 ligands were assessed. Following the completion of Stage 1, all BACE1 co-crystal structures were released, and Stage 2 tested affinity rankings with co-crystal structures. We provide an analysis of the results and discuss insights into determined best practice methods.

Reviews citing this publication (9)

  1. Computational approaches streamlining drug discovery. Sadybekov AV, Katritch V. Nature 616 673-685 (2023)
  2. Deep Learning in Virtual Screening: Recent Applications and Developments. Kimber TB, Chen Y, Volkamer A. Int J Mol Sci 22 4435 (2021)
  3. Protein storytelling through physics. Brini E, Simmerling C, Dill K. Science 370 eaaz3041 (2020)
  4. Protein-Ligand Docking in the Machine-Learning Era. Yang C, Chen EA, Zhang Y. Molecules 27 4568 (2022)
  5. Open-access data: A cornerstone for artificial intelligence approaches to protein structure prediction. Burley SK, Berman HM. Structure 29 515-520 (2021)
  6. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein-Ligand Scoring Functions. Yang C, Zhang Y. J Chem Inf Model 62 2696-2712 (2022)
  7. Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective. Ahmad K, Rizzi A, Capelli R, Mandelli D, Lyu W, Carloni P. Front Mol Biosci 9 899805 (2022)
  8. Deep learning-based molecular dynamics simulation for structure-based drug design against SARS-CoV-2. Sun Y, Jiao Y, Shi C, Zhang Y. Comput Struct Biotechnol J 20 5014-5027 (2022)
  9. Pepsin-like aspartic proteases (PAPs) as model systems for combining biomolecular simulation with biophysical experiments. Bhakat S. RSC Adv 11 11026-11047 (2021)

Articles citing this publication (35)

  1. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. J Chem Inf Model 61 3891-3898 (2021)
  2. Are 2D fingerprints still valuable for drug discovery? Gao K, Nguyen DD, Sresht V, Mathiowetz AM, Tu M, Wei GW. Phys Chem Chem Phys 22 8373-8390 (2020)
  3. Best practices for constructing, preparing, and evaluating protein-ligand binding affinity benchmarks [Article v0.1]. Hahn DF, Bayly CI, Macdonald HEB, Chodera JD, Mey ASJS, Mobley DL, Benito LP, Schindler CEM, Tresadern G, Warren GL. Living J Comput Mol Sci 4 1497 (2022)
  4. SAMPL7 Host-Guest Challenge Overview: assessing the reliability of polarizable and non-polarizable methods for binding free energy calculations. Amezcua M, El Khoury L, Mobley DL. J Comput Aided Mol Des 35 1-35 (2021)
  5. Ligand-centered assessment of SARS-CoV-2 drug target models in the Protein Data Bank. Wlodawer A, Dauter Z, Shabalin IG, Gilski M, Brzezinski D, Kowiel M, Minor W, Rupp B, Jaskolski M. FEBS J 287 3703-3718 (2020)
  6. New prediction categories in CASP15. Kryshtafovych A, Antczak M, Szachniuk M, Zok T, Kretsch RC, Rangan R, Pham P, Das R, Robin X, Studer G, Durairaj J, Eberhardt J, Sweeney A, Topf M, Schwede T, Fidelis K, Moult J. Proteins 91 1550-1557 (2023)
  7. Challenges Encountered Applying Equilibrium and Nonequilibrium Binding Free Energy Calculations. Baumann HM, Gapsys V, de Groot BL, Mobley DL. J Phys Chem B 125 4241-4261 (2021)
  8. Continuous Automated Model EvaluatiOn (CAMEO)-Perspectives on the future of fully automated evaluation of structure prediction methods. Robin X, Haas J, Gumienny R, Smolinski A, Tauriello G, Schwede T. Proteins 89 1977-1986 (2021)
  9. CACHE (Critical Assessment of Computational Hit-finding Experiments): A public-private partnership benchmarking initiative to enable the development of computational methods for hit-finding. Ackloo S, Al-Awar R, Amaro RE, Arrowsmith CH, Azevedo H, Batey RA, Bengio Y, Betz UAK, Bologa CG, Chodera JD, Cornell WD, Dunham I, Ecker GF, Edfeldt K, Edwards AM, Gilson MK, Gordijo CR, Hessler G, Hillisch A, Hogner A, Irwin JJ, Jansen JM, Kuhn D, Leach AR, Lee AA, Lessel U, Morgan MR, Moult J, Muegge I, Oprea TI, Perry BG, Riley P, Rousseaux SAL, Saikatendu KS, Santhakumar V, Schapira M, Scholten C, Todd MH, Vedadi M, Volkamer A, Willson TM. Nat Rev Chem 6 287-295 (2022)
  10. Critical assessment of methods of protein structure prediction (CASP)-Round XV. Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Proteins 91 1539-1549 (2023)
  11. Scoring Functions for Protein-Ligand Binding Affinity Prediction using Structure-Based Deep Learning: A Review. Meli R, Morris GM, Biggin PC. Front Bioinform 2 885983 (2022)
  12. On Calculating Free Energy Differences Using Ensembles of Transition Paths. Hall R, Dixon T, Dickson A. Front Mol Biosci 7 106 (2020)
  13. A strategy for proline and glycine mutations to proteins with alchemical free energy calculations. Hayes RL, Brooks CL. J Comput Chem 42 1088-1094 (2021)
  14. Lin_F9: A Linear Empirical Scoring Function for Protein-Ligand Docking. Yang C, Zhang Y. J Chem Inf Model 61 4630-4644 (2021)
  15. Shape-Restrained Modeling of Protein-Small-Molecule Complexes with High Ambiguity Driven DOCKing. Koukos PI, Réau M, Bonvin AMJJ. J Chem Inf Model 61 4807-4818 (2021)
  16. Addressing Intersite Coupling Unlocks Large Combinatorial Chemical Spaces for Alchemical Free Energy Methods. Hayes RL, Vilseck JZ, Brooks CL. J Chem Theory Comput 18 2114-2123 (2022)
  17. An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models. Parks C, Gaieb Z, Amaro RE. Front Mol Biosci 7 93 (2020)
  18. Use of the Complementarity Principle in Docking Procedures: A New Approach for Evaluating the Correctness of Binding Poses. Rimac H, Grishina M, Potemkin V. J Chem Inf Model 61 1801-1813 (2021)
  19. Scaffold Hopping Transformations Using Auxiliary Restraints for Calculating Accurate Relative Binding Free Energies. Zou J, Li Z, Liu S, Peng C, Fang D, Wan X, Lin Z, Lee TS, Raleigh DP, Yang M, Simmerling C. J Chem Theory Comput 17 3710-3726 (2021)
  20. Dissimilar Ligands Bind in a Similar Fashion: A Guide to Ligand Binding-Mode Prediction with Application to CELPP Studies. Xu X, Zou X. Int J Mol Sci 22 12320 (2021)
  21. SAMPL7 protein-ligand challenge: A community-wide evaluation of computational methods against fragment screening and pose-prediction. Grosjean H, Işık M, Aimon A, Mobley D, Chodera J, von Delft F, Biggin PC. J Comput Aided Mol Des 36 291-311 (2022)
  22. Target identification for repurposed drugs active against SARS-CoV-2 via high-throughput inverse docking. Ribone SR, Paz SA, Abrams CF, Villarreal MA. J Comput Aided Mol Des 36 25-37 (2022)
  23. Host-guest systems for the SAMPL9 blinded prediction challenge: phenothiazine as a privileged scaffold for binding to cyclodextrins. Andrade B, Chen A, Gilson MK. Phys Chem Chem Phys 26 2035-2043 (2024)
  24. Performance evaluation of flexible macrocycle docking in AutoDock. Holcomb M, Santos-Martins D, Tillack AF, Forli S. QRB Discov 3 e18 (2022)
  25. Exploring ligand dynamics in protein crystal structures with ensemble refinement. Caldararu O, Ekberg V, Logan DT, Oksanen E, Ryde U. Acta Crystallogr D Struct Biol 77 1099-1115 (2021)
  26. Structure-activity relationship studies and bioactivity evaluation of 1,2,3-triazole containing analogues as a selective sphingosine kinase-2 inhibitors. Tangadanchu VKR, Jiang H, Yu Y, Graham TJA, Liu H, Rogers BE, Gropler R, Perlmutter J, Tu Z. Eur J Med Chem 206 112713 (2020)
  27. Template-guided method for protein-ligand complex structure prediction: Application to CASP15 protein-ligand studies. Xu X, Duan R, Zou X. Proteins 91 1829-1836 (2023)
  28. Accurate ligand-protein docking in CASP15 using the ClusPro LigTBM server. Kotelnikov S, Ashizawa R, Popov KI, Khan O, Ignatov M, Li SX, Hassan M, Coutsias EA, Poda G, Padhorny D, Tropsha A, Vajda S, Kozakov D. Proteins 91 1822-1828 (2023)
  29. Benchmarking ensemble docking methods in D3R Grand Challenge 4. Gan JL, Kumar D, Chen C, Taylor BC, Jagger BR, Amaro RE, Lee CT. J Comput Aided Mol Des 36 87-99 (2022)
  30. Expanded ensemble predictions of absolute binding free energies in the SAMPL9 host-guest challenge. Hurley MFD, Raddi RM, Pattis JG, Voelz VA. Phys Chem Chem Phys 25 32393-32406 (2023)
  31. Free energies at QM accuracy from force fields via multimap targeted estimation. Rizzi A, Carloni P, Parrinello M. Proc Natl Acad Sci U S A 120 e2304308120 (2023)
  32. De novo drug design through gradient-based regularized search in information-theoretically controlled latent space. Jang H, Seo S, Park S, Kim BJ, Choi GW, Choi J, Park C. J Comput Aided Mol Des 38 32 (2024)
  33. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction. Szwabowski GL, Griffing M, Mugabe EJ, O'Malley D, Baker LN, Baker DL, Parrill AL. Int J Mol Sci 25 6876 (2024)
  34. Prediction of Threonine-Tyrosine Kinase Receptor-Ligand Unbinding Kinetics with Multiscale Milestoning and Metadynamics. Votapka LW, Ojha AA, Asada N, Amaro RE. J Phys Chem Lett 15 10473-10478 (2024)
  35. Editorial Target 2035 - an update on private sector contributions. Ackloo S, Antolin AA, Bartolome JM, Beck H, Bullock A, Betz UAK, Böttcher J, Brown PJ, Chaturvedi M, Crisp A, Daniels D, Dreher J, Edfeldt K, Edwards AM, Egner U, Elkins J, Fischer C, Glendorf T, Goldberg S, Hartung IV, Hillisch A, Homan E, Knapp S, Köster M, Krämer O, Llaveria J, Lessel U, Lindemann S, Linderoth L, Matsui H, Michel M, Montel F, Mueller-Fahrnow A, Müller S, Owen DR, Saikatendu KS, Santhakumar V, Sanderson W, Scholten C, Schapira M, Sharma S, Shireman B, Sundström M, Todd MH, Tredup C, Venable J, Willson TM, Arrowsmith CH. RSC Med Chem 14 1002-1011 (2023)