5uha Citations

Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition.

Abstract

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which kills 1.8 million annually. Mtb RNA polymerase (RNAP) is the target of the first-line antituberculosis drug rifampin (Rif). We report crystal structures of Mtb RNAP, alone and in complex with Rif, at 3.8-4.4 Å resolution. The results identify an Mtb-specific structural module of Mtb RNAP and establish that Rif functions by a steric-occlusion mechanism that prevents extension of RNA. We also report non-Rif-related compounds-Nα-aroyl-N-aryl-phenylalaninamides (AAPs)-that potently and selectively inhibit Mtb RNAP and Mtb growth, and we report crystal structures of Mtb RNAP in complex with AAPs. AAPs bind to a different site on Mtb RNAP than Rif, exhibit no cross-resistance with Rif, function additively when co-administered with Rif, and suppress resistance emergence when co-administered with Rif.

Articles - 5uha mentioned but not cited (7)

  1. Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition. Lin W, Mandal S, Degen D, Liu Y, Ebright YW, Li S, Feng Y, Zhang Y, Mandal S, Jiang Y, Liu S, Gigliotti M, Talaue M, Connell N, Das K, Arnold E, Ebright RH. Mol Cell 66 169-179.e8 (2017)
  2. Structural basis for transcription initiation by bacterial ECF σ factors. Li L, Fang C, Zhuang N, Wang T, Zhang Y. Nat Commun 10 1153 (2019)
  3. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Hubin EA, Lilic M, Darst SA, Campbell EA. Nat Commun 8 16072 (2017)
  4. Structural basis of ECF-σ-factor-dependent transcription initiation. Lin W, Mandal S, Degen D, Cho MS, Feng Y, Das K, Ebright RH. Nat Commun 10 710 (2019)
  5. Source of the Fitness Defect in Rifamycin-Resistant Mycobacterium tuberculosis RNA Polymerase and the Mechanism of Compensation by Mutations in the β' Subunit. Stefan MA, Ugur FS, Garcia GA. Antimicrob Agents Chemother 62 e00164-18 (2018)
  6. Visualization of two architectures in class-II CAP-dependent transcription activation. Shi W, Jiang Y, Deng Y, Dong Z, Liu B. PLoS Biol 18 e3000706 (2020)
  7. The Core and Holoenzyme Forms of RNA Polymerase from Mycobacterium smegmatis. Kouba T, Pospíšil J, Hnilicová J, Šanderová H, Barvík I, Krásný L. J Bacteriol 201 e00583-18 (2019)


Reviews citing this publication (12)

  1. Diverse and unified mechanisms of transcription initiation in bacteria. Chen J, Boyaci H, Campbell EA. Nat Rev Microbiol 19 95-109 (2021)
  2. Repositioning rifamycins for Mycobacterium abscessus lung disease. Ganapathy US, Dartois V, Dick T. Expert Opin Drug Discov 14 867-878 (2019)
  3. Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy. Torfs E, Piller T, Cos P, Cappoen D. Int J Mol Sci 20 E2868 (2019)
  4. The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Huszár S, Chibale K, Singh V. Drug Discov Today 25 772-780 (2020)
  5. Transcription initiation in mycobacteria: a biophysical perspective. Boyaci H, Saecker RM, Campbell EA. Transcription 11 53-65 (2020)
  6. Discovery, properties, and biosynthesis of pseudouridimycin, an antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Maffioli SI, Sosio M, Ebright RH, Donadio S. J Ind Microbiol Biotechnol 46 335-343 (2019)
  7. Drug Resistance (Dapsone, Rifampicin, Ofloxacin) and Resistance-Related Gene Mutation Features in Leprosy Patients: A Systematic Review and Meta-Analysis. Li X, Li G, Yang J, Jin G, Shao Y, Li Y, Wei P, Zhang L. Int J Mol Sci 23 12443 (2022)
  8. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Stephanie F, Tambunan USF, Siahaan TJ. Life (Basel) 12 1774 (2022)
  9. How Mycobacterium tuberculosis drug resistance has shaped anti-tubercular drug discovery. Bhagwat A, Deshpande A, Parish T. Front Cell Infect Microbiol 12 974101 (2022)
  10. How to Shut Down Transcription in Archaea during Virus Infection. Pilotto S, Werner F. Microorganisms 10 1824 (2022)
  11. Structure-Guided Computational Approaches to Unravel Druggable Proteomic Landscape of Mycobacterium leprae. Vedithi SC, Malhotra S, Acebrón-García-de-Eulate M, Matusevicius M, Torres PHM, Blundell TL. Front Mol Biosci 8 663301 (2021)
  12. [New inhibitors targeting bacterial RNA polymerase]. Shi J, Feng Y. Zhejiang Da Xue Xue Bao Yi Xue Ban 48 44-49 (2019)

Articles citing this publication (56)

  1. Role of Disputed Mutations in the rpoB Gene in Interpretation of Automated Liquid MGIT Culture Results for Rifampin Susceptibility Testing of Mycobacterium tuberculosis. Miotto P, Cabibbe AM, Borroni E, Degano M, Cirillo DM. J Clin Microbiol 56 e01599-17 (2018)
  2. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang D, Ebright YW, Ebright RY, Sineva E, Gigliotti M, Srivastava A, Mandal S, Jiang Y, Liu Y, Yin R, Zhang Z, Eng ET, Thomas D, Donadio S, Zhang H, Zhang C, Kapanidis AN, Ebright RH. Mol Cell 70 60-71.e15 (2018)
  3. Screening of TB Actives for Activity against Nontuberculous Mycobacteria Delivers High Hit Rates. Low JL, Wu ML, Aziz DB, Laleu B, Dick T. Front Microbiol 8 1539 (2017)
  4. Cryo-EM structure of Escherichia coli σ70 RNA polymerase and promoter DNA complex revealed a role of σ non-conserved region during the open complex formation. Narayanan A, Vago FS, Li K, Qayyum MZ, Yernool D, Jiang W, Murakami KS. J Biol Chem 293 7367-7375 (2018)
  5. Understanding molecular consequences of putative drug resistant mutations in Mycobacterium tuberculosis. Portelli S, Phelan JE, Ascher DB, Clark TG, Furnham N. Sci Rep 8 15356 (2018)
  6. Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF. Nat Commun 9 4147 (2018)
  7. Mode of Action of Kanglemycin A, an Ansamycin Natural Product that Is Active against Rifampicin-Resistant Mycobacterium tuberculosis. Mosaei H, Molodtsov V, Kepplinger B, Harbottle J, Moon CW, Jeeves RE, Ceccaroni L, Shin Y, Morton-Laing S, Marrs ECL, Wills C, Clegg W, Yuzenkova Y, Perry JD, Bacon J, Errington J, Allenby NEE, Hall MJ, Murakami KS, Zenkin N. Mol Cell 72 263-274.e5 (2018)
  8. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. Duchi D, Mazumder A, Malinen AM, Ebright RH, Kapanidis AN. Nucleic Acids Res 46 7284-7295 (2018)
  9. Computational saturation mutagenesis to predict structural consequences of systematic mutations in the beta subunit of RNA polymerase in Mycobacterium leprae. Vedithi SC, Rodrigues CHM, Portelli S, Skwark MJ, Das M, Ascher DB, Blundell TL, Malhotra S. Comput Struct Biotechnol J 18 271-286 (2020)
  10. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Newing TP, Oakley AJ, Miller M, Dawson CJ, Brown SHJ, Bouwer JC, Tolun G, Lewis PJ. Nat Commun 11 6420 (2020)
  11. Structures and mechanism of transcription initiation by bacterial ECF factors. Fang C, Li L, Shen L, Shi J, Wang S, Feng Y, Zhang Y. Nucleic Acids Res 47 7094-7104 (2019)
  12. rpoB Mutations and Effects on Rifampin Resistance in Mycobacterium tuberculosis. Li MC, Lu J, Lu Y, Xiao TY, Liu HC, Lin SQ, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. Infect Drug Resist 14 4119-4128 (2021)
  13. Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches. Portelli S, Myung Y, Furnham N, Vedithi SC, Pires DEV, Ascher DB. Sci Rep 10 18120 (2020)
  14. Closing and opening of the RNA polymerase trigger loop. Mazumder A, Lin M, Kapanidis AN, Ebright RH. Proc Natl Acad Sci U S A 117 15642-15649 (2020)
  15. Potent Inhibitors of Mycobacterium tuberculosis Growth Identified by Using in-Cell NMR-based Screening. DeMott CM, Girardin R, Cobbert J, Reverdatto S, Burz DS, McDonough K, Shekhtman A. ACS Chem Biol 13 733-741 (2018)
  16. Identification and Characterization of Genetic Determinants of Isoniazid and Rifampicin Resistance in Mycobacterium tuberculosis in Southern India. Munir A, Kumar N, Ramalingam SB, Tamilzhalagan S, Shanmugam SK, Palaniappan AN, Nair D, Priyadarshini P, Natarajan M, Tripathy S, Ranganathan UD, Peacock SJ, Parkhill J, Blundell TL, Malhotra S. Sci Rep 9 10283 (2019)
  17. Structural basis of transcriptional activation by the Mycobacterium tuberculosis intrinsic antibiotic-resistance transcription factor WhiB7. Lilic M, Darst SA, Campbell EA. Mol Cell 81 2875-2886.e5 (2021)
  18. Compensatory effects of M. tuberculosis rpoB mutations outside the rifampicin resistance-determining region. Ma P, Luo T, Ge L, Chen Z, Wang X, Zhao R, Liao W, Bao L. Emerg Microbes Infect 10 743-752 (2021)
  19. The antibiotic sorangicin A inhibits promoter DNA unwinding in a Mycobacterium tuberculosis rifampicin-resistant RNA polymerase. Lilic M, Chen J, Boyaci H, Braffman N, Hubin EA, Herrmann J, Müller R, Mooney R, Landick R, Darst SA, Campbell EA. Proc Natl Acad Sci U S A 117 30423-30432 (2020)
  20. Bifidobacterium adolescentis is intrinsically resistant to antitubercular drugs. Lokesh D, Parkesh R, Kammara R. Sci Rep 8 11897 (2018)
  21. Structural basis for transcription inhibition by E. coli SspA. Wang F, Shi J, He D, Tong B, Zhang C, Wen A, Zhang Y, Feng Y, Lin W. Nucleic Acids Res 48 9931-9942 (2020)
  22. Analysing the fitness cost of antibiotic resistance to identify targets for combination antimicrobials. Rasouly A, Shamovsky Y, Epshtein V, Tam K, Vasilyev N, Hao Z, Quarta G, Pani B, Li L, Vallin C, Shamovsky I, Krishnamurthy S, Shtilerman A, Vantine S, Torres VJ, Nudler E. Nat Microbiol 6 1410-1423 (2021)
  23. Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: atomistic insights. Agoni C, Ramharack P, Soliman ME. Future Med Chem 10 1665-1675 (2018)
  24. Structural insights into the unique mechanism of transcription activation by Caulobacter crescentus GcrA. Wu X, Haakonsen DL, Sanderlin AG, Liu YJ, Shen L, Zhuang N, Laub MT, Zhang Y. Nucleic Acids Res 46 3245-3256 (2018)
  25. Cryo-EM Structures Reveal Transcription Initiation Steps by Yeast Mitochondrial RNA Polymerase. De Wijngaert B, Sultana S, Singh A, Dharia C, Vanbuel H, Shen J, Vasilchuk D, Martinez SE, Kandiah E, Patel SS, Das K. Mol Cell 81 268-280.e5 (2021)
  26. Uncovering the Resistance Mechanism of Mycobacterium tuberculosis to Rifampicin Due to RNA Polymerase H451D/Y/R Mutations From Computational Perspective. Zhang Q, An X, Liu H, Wang S, Xiao T, Liu H. Front Chem 7 819 (2019)
  27. Oxidative damage and delayed replication allow viable Mycobacterium tuberculosis to go undetected. Saito K, Mishra S, Warrier T, Cicchetti N, Mi J, Weber E, Jiang X, Roberts J, Gouzy A, Kaplan E, Brown CD, Gold B, Nathan C. Sci Transl Med 13 eabg2612 (2021)
  28. THP-1 and Dictyostelium Infection Models for Screening and Characterization of Anti-Mycobacterium abscessus Hit Compounds. Richter A, Shapira T, Av-Gay Y. Antimicrob Agents Chemother 64 e01601-19 (2019)
  29. Design, Synthesis, and Characterization of TNP-2198, a Dual-Targeted Rifamycin-Nitroimidazole Conjugate with Potent Activity against Microaerophilic and Anaerobic Bacterial Pathogens. Ma Z, He S, Yuan Y, Zhuang Z, Liu Y, Wang H, Chen J, Xu X, Ding C, Molodtsov V, Lin W, Robertson GT, Weiss WJ, Pulse M, Nguyen P, Duncan L, Doyle T, Ebright RH, Lynch AS. J Med Chem 65 4481-4495 (2022)
  30. Determination of potentially novel compensatory mutations in rpoc associated with rifampin resistance and rpob mutations in Mycobacterium tuberculosis Clinical isolates from peru. Vargas AP, Rios AA, Grandjean L, Kirwan DE, Gilman RH, Sheen P, Zimic MJ. Int J Mycobacteriol 9 121-137 (2020)
  31. Discovery of a highly potent novel rifampicin analog by preparing a hybrid of the precursors of the antibiotic drugs rifampicin and clofazimine. Saravanan P, Dusthackeer VNA, Rajmani RS, Mahizhaveni B, Nirmal CR, Rajadas SE, Bhardwaj N, Ponnuraja C, Bhaskar A, Hemanthkumar AK, Ramachandran G, Tripathy SP. Sci Rep 11 1029 (2021)
  32. Computational modeling and bioinformatic analyses of functional mutations in drug target genes in Mycobacterium tuberculosis. Singh P, Jamal S, Ahmed F, Saqib N, Mehra S, Ali W, Roy D, Ehtesham NZ, Hasnain SE. Comput Struct Biotechnol J 19 2423-2446 (2021)
  33. Exploring the Lapse in Druggability: Sequence Analysis, Structural Dynamics and Binding Site Characterization of K-RasG12C Variant, a Feasible Oncotherapeutics Target. Adeniji EA, Olotu FA, Soliman MES. Anticancer Agents Med Chem 18 1540-1550 (2018)
  34. Identification of Rifampicin Resistance Mutations in Escherichia coli, Including an Unusual Deletion Mutation. Wu EY, Hilliker AK. J Mol Microbiol Biotechnol 27 356-362 (2017)
  35. A synthetic switch based on orange carotenoid protein to control blue-green light responses in chloroplasts. Piccinini L, Iacopino S, Cazzaniga S, Ballottari M, Giuntoli B, Licausi F. Plant Physiol 189 1153-1168 (2022)
  36. Association of ω with the C-Terminal Region of the β' Subunit Is Essential for Assembly of RNA Polymerase in Mycobacterium tuberculosis. Mao C, Zhu Y, Lu P, Feng L, Chen S, Hu Y. J Bacteriol 200 e00159-18 (2018)
  37. Early detection of MDR Mycobacterium tuberculosis mutations in Pakistan. Aftab A, Afzal S, Qamar Z, Idrees M. Sci Rep 11 16736 (2021)
  38. Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. Monama MZ, Olotu F, Tastan Bishop Ö. Int J Mol Sci 24 3313 (2023)
  39. Mutations and insights into the molecular mechanisms of resistance of Mycobacterium tuberculosis to first-line. Rossini NO, Dias MVB. Genet Mol Biol 46 e20220261 (2023)
  40. Probing the Molecular Mechanism of Rifampin Resistance Caused by the Point Mutations S456L and D441V on Mycobacterium tuberculosis RNA Polymerase through Gaussian Accelerated Molecular Dynamics Simulation. Zhang Q, Tan S, Xiao T, Liu H, Shah SJA, Liu H. Antimicrob Agents Chemother 64 e02476-19 (2020)
  41. Racemization-free synthesis of Nα-2-thiophenoyl-phenylalanine-2-morpholinoanilide enantiomers and their antimycobacterial activity. Mann L, Lang M, Schulze P, Halz JH, Csuk R, Hoenke S, Seidel RW, Richter A. Amino Acids 53 1187-1196 (2021)
  42. Development of a novel secondary phenotypic screen to identify hits within the mycobacterial protein synthesis pipeline. Burke C, Jankute M, Moynihan P, Gonzalez Del Rio R, Li X, Esquivias J, Lelièvre J, Cox JAG, Sacchettini J, Besra GS. FASEB Bioadv 2 600-612 (2020)
  43. Possible Binding of Piperine in Mycobacterium tuberculosis RNA Polymerase and Rifampin Synergism. Murase LS, Perez de Souza JV, Meneguello JE, Seixas FAV, Hegeto LA, Scodro RBL, Siqueira VLD, Caleffi Ferracioli KR, Cardoso RF. Antimicrob Agents Chemother 63 e02520-18 (2019)
  44. Region 4 of the RNA polymerase σ subunit counteracts pausing during initial transcription. Brodolin K, Morichaud Z. J Biol Chem 296 100253 (2021)
  45. The Structural Basis of Mycobacterium tuberculosis RpoB Drug-Resistant Clinical Mutations on Rifampicin Drug Binding. Amusengeri A, Khan A, Tastan Bishop Ö. Molecules 27 885 (2022)
  46. "Upcycling" known molecules and targets for drug-resistant TB. Roubert C, Fontaine E, Upton AM. Front Cell Infect Microbiol 12 1029044 (2022)
  47. In Vitro Profiling of the Synthetic RNA Polymerase Inhibitor MMV688845 against Mycobacterium abscessus. Mann L, Ganapathy US, Abdelaziz R, Lang M, Zimmerman MD, Dartois V, Dick T, Richter A. Microbiol Spectr 10 e0276022 (2022)
  48. Correlation of drug resistance with single nucleotide variations through genome analysis and experimental validation in a multi-drug resistant clinical isolate of M. tuberculosis. Bhattacharyya K, Nemaysh V, Joon M, Pratap R, Varma-Basil M, Bose M, Brahmachari V. BMC Microbiol 20 223 (2020)
  49. New Investigations with Lupane Type A-Ring Azepane Triterpenoids for Antimycobacterial Drug Candidate Design. Kazakova O, Racoviceanu R, Petrova A, Mioc M, Militaru A, Udrescu L, Udrescu M, Voicu A, Cummings J, Robertson G, Ordway DJ, Slayden RA, Șoica C. Int J Mol Sci 22 12542 (2021)
  50. Predicting antibiotic resistance in complex protein targets using alchemical free energy methods. Brankin AE, Fowler PW. J Comput Chem 43 1771-1782 (2022)
  51. Association between mutations in a thyX-hsdS.1 region and para-aminosalicylic acid resistance in Mycobacterium tuberculosis clinical isolates. Zeng R, He L, Zhang B, Hu Y, Yu J, Yang S, Gu J, Wu Z, Deng J. Emerg Microbes Infect 12 2276339 (2023)
  52. High-resolution landscape of an antibiotic binding site. Yang KB, Cameranesi M, Gowder M, Martinez C, Shamovsky Y, Epshtein V, Hao Z, Nguyen T, Nirenstein E, Shamovsky I, Rasouly A, Nudler E. Nature 622 180-187 (2023)
  53. Identification and Structural Modeling of the RNA Polymerase Omega Subunits in Chlamydiae and Other Obligate Intracellular Bacteria. Cheng A, Wan D, Ghatak A, Wang C, Feng D, Fondell JD, Ebright RH, Fan H. mBio 14 e0349922 (2023)
  54. Structural and functional basis of the universal transcription factor NusG pro-pausing activity in Mycobacterium tuberculosis. Delbeau M, Omollo EO, Froom R, Koh S, Mooney RA, Lilic M, Brewer JJ, Rock J, Darst SA, Campbell EA, Landick R. Mol Cell 83 1474-1488.e8 (2023)
  55. Synthesis and Characterization of Phenylalanine Amides Active against Mycobacterium abscessus and Other Mycobacteria. Lang M, Ganapathy US, Mann L, Abdelaziz R, Seidel RW, Goddard R, Sequenzia I, Hoenke S, Schulze P, Aragaw WW, Csuk R, Dick T, Richter A. J Med Chem 66 5079-5098 (2023)
  56. What the Hel: recent advances in understanding rifampicin resistance in bacteria. Sudzinová P, Šanderová H, Koval' T, Skálová T, Borah N, Hnilicová J, Kouba T, Dohnálek J, Krásný L. FEMS Microbiol Rev 47 fuac051 (2023)