5vw1 Citations

Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.

Mol Cell 67 117-127.e5 (2017)
Cited: 82 times
EuropePMC logo PMID: 28602637

Abstract

Prokaryotic CRISPR-Cas adaptive immune systems utilize sequence-specific RNA-guided endonucleases to defend against infection by viruses, bacteriophages, and mobile elements, while these foreign genetic elements evolve diverse anti-CRISPR proteins to overcome the CRISPR-Cas-mediated defense of the host. Recently, AcrIIA2 and AcrIIA4, encoded by Listeria monocytogene prophages, were shown to block the endonuclease activity of type II-A Streptococcus pyogene Cas9 (SpyCas9). We now report the crystal structure of AcrIIA4 in complex with single-guide RNA-bound SpyCas9, thereby establishing that AcrIIA4 preferentially targets critical residues essential for PAM duplex recognition, as well as blocks target DNA access to key catalytic residues lining the RuvC pocket. These structural insights, validated by biochemical assays on key mutants, demonstrate that AcrIIA4 competitively occupies both PAM-interacting and non-target DNA strand cleavage catalytic pockets. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms for inactivating SpyCas9, thereby broadening the applicability of CRISPR-Cas regulatory tools for genome editing.

Reviews - 5vw1 mentioned but not cited (5)

  1. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. Annu Rev Microbiol 74 21-37 (2020)
  2. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs. Trasanidou D, Gerós AS, Mohanraju P, Nieuwenweg AC, Nobrega FL, Staals RHJ. FEMS Microbiol Lett 366 fnz098 (2019)
  3. Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. Zhu Y, Zhang F, Huang Z. BMC Biol 16 32 (2018)
  4. Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. Bhattacharya S, Satpati P. ACS Omega 8 1817-1837 (2023)
  5. The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors. Belato HB, Lisi GP. Biomolecules 13 264 (2023)

Articles - 5vw1 mentioned but not cited (6)



Reviews citing this publication (23)

  1. Anti-CRISPR: discovery, mechanism and function. Pawluk A, Davidson AR, Maxwell KL. Nat Rev Microbiol 16 12-17 (2018)
  2. Phage-Encoded Anti-CRISPR Defenses. Stanley SY, Maxwell KL. Annu Rev Genet 52 445-464 (2018)
  3. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems. Davidson AR, Lu WT, Stanley SY, Wang J, Mejdani M, Trost CN, Hicks BT, Lee J, Sontheimer EJ. Annu Rev Biochem 89 309-332 (2020)
  4. Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Gangopadhyay SA, Cox KJ, Manna D, Lim D, Maji B, Zhou Q, Choudhary A. Biochemistry 58 234-244 (2019)
  5. Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Huang CH, Lee KC, Doudna JA. Trends Cancer 4 499-512 (2018)
  6. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. Synth Syst Biotechnol 3 135-149 (2018)
  7. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. Han HA, Pang JKS, Soh BS. J Mol Med (Berl) 98 615-632 (2020)
  8. Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems. Hwang S, Maxwell KL. CRISPR J 2 23-30 (2019)
  9. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Jia N, Patel DJ. Nat Rev Mol Cell Biol 22 563-579 (2021)
  10. Inhibition of CRISPR-Cas systems by mobile genetic elements. Sontheimer EJ, Davidson AR. Curr Opin Microbiol 37 120-127 (2017)
  11. Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems. Zhang F, Song G, Tian Y. Animal Model Exp Med 2 69-75 (2019)
  12. Split Cas9, Not Hairs - Advancing the Therapeutic Index of CRISPR Technology. Schmelas C, Grimm D. Biotechnol J 13 e1700432 (2018)
  13. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. Xue C, Sashital DG. EcoSal Plus 8 (2019)
  14. CRISPR RNA-guided autonomous delivery of Cas9. Wilkinson RA, Martin C, Nemudryi AA, Wiedenheft B. Nat Struct Mol Biol 26 14-24 (2019)
  15. Digging into the lesser-known aspects of CRISPR biology. Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Int Microbiol 24 473-498 (2021)
  16. Therapeutic application of the CRISPR system: current issues and new prospects. Lee M, Kim H. Hum Genet 138 563-590 (2019)
  17. Type II anti-CRISPR proteins as a new tool for synthetic biology. Zhang Y, Marchisio MA. RNA Biol 18 1085-1098 (2021)
  18. [Why so rare if so essentiel: the determinants of the sparse distribution of CRISPR-Cas systems in bacterial genomes]. Bernheim A. Biol Aujourdhui 211 255-264 (2017)
  19. Mechanisms regulating the CRISPR-Cas systems. Zakrzewska M, Burmistrz M. Front Microbiol 14 1060337 (2023)
  20. Unveil the Secret of the Bacteria and Phage Arms Race. Wang Y, Fan H, Tong Y. Int J Mol Sci 24 4363 (2023)
  21. A comprehensive appraisal of mechanism of anti-CRISPR proteins: an advanced genome editor to amend the CRISPR gene editing. Choudhary N, Tandi D, Verma RK, Yadav VK, Dhingra N, Ghosh T, Choudhary M, Gaur RK, Abdellatif MH, Gacem A, Eltayeb LB, Alqahtani MS, Yadav KK, Jeon BH. Front Plant Sci 14 1164461 (2023)
  22. Recent advances in the use of CRISPR/Cas for understanding the early development of molecular gaps in glial cells. Barragán-Álvarez CP, Flores-Fernandez JM, Hernández-Pérez OR, Ávila-Gónzalez D, Díaz NF, Padilla-Camberos E, Dublan-García O, Gómez-Oliván LM, Diaz-Martinez NE. Front Cell Dev Biol 10 947769 (2022)
  23. Small Molecules for Enhancing the Precision and Safety of Genome Editing. Shin S, Jang S, Lim D. Molecules 27 6266 (2022)

Articles citing this publication (48)