5w6i Citations

Potent peptidic fusion inhibitors of influenza virus.

Abstract

Influenza therapeutics with new targets and mechanisms of action are urgently needed to combat potential pandemics, emerging viruses, and constantly mutating strains in circulation. We report here on the design and structural characterization of potent peptidic inhibitors of influenza hemagglutinin. The peptide design was based on complementarity-determining region loops of human broadly neutralizing antibodies against the hemagglutinin (FI6v3 and CR9114). The optimized peptides exhibit nanomolar affinity and neutralization against influenza A group 1 viruses, including the 2009 H1N1 pandemic and avian H5N1 strains. The peptide inhibitors bind to the highly conserved stem epitope and block the low pH-induced conformational rearrangements associated with membrane fusion. These peptidic compounds and their advantageous biological properties should accelerate the development of new small molecule- and peptide-based therapeutics against influenza virus.

Articles - 5w6i mentioned but not cited (3)

  1. Potent peptidic fusion inhibitors of influenza virus. Kadam RU, Juraszek J, Brandenburg B, Buyck C, Schepens WBG, Kesteleyn B, Stoops B, Vreeken RJ, Vermond J, Goutier W, Tang C, Vogels R, Friesen RHE, Goudsmit J, van Dongen MJP, Wilson IA. Science 358 496-502 (2017)
  2. Epitope mapping of diverse influenza Hemagglutinin drug candidates using HDX-MS. Puchades C, Kűkrer B, Diefenbach O, Sneekes-Vriese E, Juraszek J, Koudstaal W, Apetri A. Sci Rep 9 4735 (2019)
  3. Monte Carlo simulations using PELE to identify a protein-protein inhibitor binding site and pose. Díaz L, Soler D, Tresadern G, Buyck C, Perez-Benito L, Saen-Oon S, Guallar V, Soliva R. RSC Adv 10 7058-7064 (2020)


Reviews citing this publication (26)

  1. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Rey FA, Lok SM. Cell 172 1319-1334 (2018)
  2. Structural insights into the design of novel anti-influenza therapies. Wu NC, Wilson IA. Nat Struct Mol Biol 25 115-121 (2018)
  3. Influenza Hemagglutinin Structures and Antibody Recognition. Wu NC, Wilson IA. Cold Spring Harb Perspect Med 10 a038778 (2020)
  4. Influenza Virus: A Master Tactician in Innate Immune Evasion and Novel Therapeutic Interventions. Hsu AC. Front Immunol 9 743 (2018)
  5. Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Wu NC, Wilson IA. Viruses 12 E1053 (2020)
  6. Neutralizing Antibodies Targeting the Conserved Stem Region of Influenza Hemagglutinin. Nath Neerukonda S, Vassell R, Weiss CD. Vaccines (Basel) 8 E382 (2020)
  7. Peptide Antiviral Strategies as an Alternative to Treat Lower Respiratory Viral Infections. Nyanguile O. Front Immunol 10 1366 (2019)
  8. Peptides to combat viral infectious diseases. Al-Azzam S, Ding Y, Liu J, Pandya P, Ting JP, Afshar S. Peptides 134 170402 (2020)
  9. Entry Inhibitors: Efficient Means to Block Viral Infection. Pattnaik GP, Chakraborty H. J Membr Biol 253 425-444 (2020)
  10. Protective neutralizing epitopes in SARS-CoV-2. Liu H, Wilson IA. Immunol Rev 310 76-92 (2022)
  11. Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria-human protein interactions. Chowdhury S, Happonen L, Khakzad H, Malmström L, Malmström J. Med Microbiol Immunol 209 265-275 (2020)
  12. Small Molecule Inhibitors of Influenza Virus Entry. Chen Z, Cui Q, Caffrey M, Rong L, Du R. Pharmaceuticals (Basel) 14 587 (2021)
  13. Inhibition of Viral Membrane Fusion by Peptides and Approaches to Peptide Design. Düzgüneş N, Fernandez-Fuentes N, Konopka K. Pathogens 10 1599 (2021)
  14. Antiviral peptides against Enterovirus A71 causing hand, foot and mouth disease. Lalani S, Gew LT, Poh CL. Peptides 136 170443 (2021)
  15. Nanoscale pathogens treated with nanomaterial-like peptides: a platform technology appropriate for future pandemics. F Nahhas A, F Nahhas A, J Webster T. Nanomedicine (Lond) 16 1237-1254 (2021)
  16. Recent advances in materials science: a reinforced approach toward challenges against COVID-19. Saxena A, Khare D, Agrawal S, Singh A, Dubey AK. Emergent Mater 4 57-73 (2021)
  17. Structural Insights for Anti-Influenza Vaccine Design. Han L, Chen C, Han X, Lin S, Ao X, Han X, Wang J, Ye H. Comput Struct Biotechnol J 17 475-483 (2019)
  18. A Review: The Antiviral Activity of Cyclic Peptides. Chia LY, Kumar PV, Maki MAA, Ravichandran G, Thilagar S. Int J Pept Res Ther 29 7 (2023)
  19. Will Peptides Help to Stop COVID-19? Krut' VG, Chuvpilo SA, Astrakhantseva IV, Kozlovskaya LI, Efimov GA, Kruglov AA, Drutskaya MS, Nedospasov SA. Biochemistry (Mosc) 87 590-604 (2022)
  20. Analysis of the conserved protective epitopes of hemagglutinin on influenza A viruses. Jiao C, Wang B, Chen P, Jiang Y, Liu J. Front Immunol 14 1086297 (2023)
  21. Antiviral Peptides as Anti-Influenza Agents. Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Int J Mol Sci 23 11433 (2022)
  22. Design of Protein Segments and Peptides for Binding to Protein Targets. Gupta S, Azadvari N, Hosseinzadeh P. Biodes Res 2022 9783197 (2022)
  23. Molecular Modeling of Viral Type I Fusion Proteins: Inhibitors of Influenza Virus Hemagglutinin and the Spike Protein of Coronavirus. Borisevich SS, Zarubaev VV, Shcherbakov DN, Yarovaya OI, Salakhutdinov NF. Viruses 15 902 (2023)
  24. Quinones as Promising Compounds against Respiratory Viruses: A Review. Chan-Zapata I, Borges-Argáez R, Ayora-Talavera G. Molecules 28 1981 (2023)
  25. Stabilisation of Viral Membrane Fusion Proteins in Prefusion Conformation by Structure-Based Design for Structure Determination and Vaccine Development. Ebel H, Benecke T, Vollmer B. Viruses 14 1816 (2022)
  26. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Int J Mol Sci 24 7842 (2023)

Articles citing this publication (53)