5xg0 Citations

Structural insight into catalytic mechanism of PET hydrolase.

OpenAccess logo Nat Commun 8 2106 (2017)
Related entries: 5xfy, 5xfz, 5xh2, 5xh3

Cited: 116 times
EuropePMC logo PMID: 29235460

Abstract

PET hydrolase (PETase), which hydrolyzes polyethylene terephthalate (PET) into soluble building blocks, provides an attractive avenue for the bioconversion of plastics. Here we present the structures of a novel PETase from the PET-consuming microbe Ideonella sakaiensis in complex with substrate and product analogs. Through structural analyses, mutagenesis, and activity measurements, a substrate-binding mode is proposed, and several features critical for catalysis are elucidated.

Reviews - 5xg0 mentioned but not cited (2)

  1. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Kawai F, Kawabata T, Oda M. Appl Microbiol Biotechnol 103 4253-4268 (2019)
  2. Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET. Magalhães RP, Cunha JM, Sousa SF. Int J Mol Sci 22 11257 (2021)

Articles - 5xg0 mentioned but not cited (7)



Reviews citing this publication (27)

  1. Enzymatic degradation of plant biomass and synthetic polymers. Chen CC, Dai L, Ma L, Guo RT, Guo RT. Nat Rev Chem 4 114-126 (2020)
  2. Mechanism-Based Design of Efficient PET Hydrolases. Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CPS, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. ACS Catal 12 3382-3396 (2022)
  3. Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Carr CM, Clarke DJ, Dobson ADW. Front Microbiol 11 571265 (2020)
  4. Structural studies reveal the molecular mechanism of PETase. Chen CC, Han X, Ko TP, Liu W, Guo RT, Guo RT. FEBS J 285 3717-3723 (2018)
  5. Current Advances in the Biodegradation and Bioconversion of Polyethylene Terephthalate. Qi X, Yan W, Cao Z, Ding M, Yuan Y. Microorganisms 10 39 (2021)
  6. Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics. Lai J, Huang H, Lin M, Xu Y, Li X, Sun B. Front Microbiol 13 1113705 (2022)
  7. Current Knowledge on Polyethylene Terephthalate Degradation by Genetically Modified Microorganisms. Urbanek AK, Kosiorowska KE, Mirończuk AM. Front Bioeng Biotechnol 9 771133 (2021)
  8. Analytical methods for the investigation of enzyme-catalyzed degradation of polyethylene terephthalate. Pirillo V, Pollegioni L, Molla G. FEBS J 288 4730-4745 (2021)
  9. Depolymerization within a Circular Plastics System. Clark RA, Shaver MP. Chem Rev 124 2617-2650 (2024)
  10. New approaches for the characterization of plastic-associated microbial communities and the discovery of plastic-degrading microorganisms and enzymes. Viljakainen VR, Hug LA. Comput Struct Biotechnol J 19 6191-6200 (2021)
  11. Toward Microbial Recycling and Upcycling of Plastics: Prospects and Challenges. Verschoor JA, Kusumawardhani H, Ram AFJ, de Winde JH. Front Microbiol 13 821629 (2022)
  12. Current advances in the structural biology and molecular engineering of PETase. Liu F, Wang T, Yang W, Zhang Y, Gong Y, Fan X, Wang G, Lu Z, Wang J. Front Bioeng Biotechnol 11 1263996 (2023)
  13. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. Nam K, Shao Y, Major DT, Wolf-Watz M. ACS Omega 9 7393-7412 (2024)
  14. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals. Mudondo J, Lee HS, Jeong Y, Kim TH, Kim S, Sung BH, Park SH, Park K, Cha HG, Yeon YJ, Kim HT. J Microbiol Biotechnol 33 1-14 (2023)
  15. Engineering Plastic Eating Enzymes Using Structural Biology. Barclay A, Acharya KR. Biomolecules 13 1407 (2023)
  16. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. Barone GD, Rodríguez-Seijo A, Parati M, Johnston B, Erdem E, Cernava T, Zhu Z, Liu X, Axmann IM, Lindblad P, Radecka I. Environ Sci Ecotechnol 20 100407 (2024)
  17. Insight on recently discovered PET polyester-degrading enzymes, thermostability and activity analyses. Buhari SB, Nezhad NG, Normi YM, Shariff FM, Leow TC. 3 Biotech 14 31 (2024)
  18. Trends in in-silico guided engineering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET. Jayasekara SK, Joni HD, Jayantha B, Dissanayake L, Mandrell C, Sinharage MMS, Molitor R, Jayasekara T, Sivakumar P, Jayakody LN. Comput Struct Biotechnol J 21 3513-3521 (2023)
  19. A Valuable Source of Promising Extremophiles in Microbial Plastic Degradation. Pham VHT, Kim J, Chang S. Polymers (Basel) 16 2109 (2024)
  20. Engineered polyethylene terephthalate hydrolases: perspectives and limits. Kawai F, Iizuka R, Kawabata T. Appl Microbiol Biotechnol 108 404 (2024)
  21. Genetic Modifications in Bacteria for the Degradation of Synthetic Polymers: A Review. Martín-González D, de la Fuente Tagarro C, De Lucas A, Bordel S, Santos-Beneit F. Int J Mol Sci 25 5536 (2024)
  22. Improving plastic degrading enzymes via directed evolution. Joho Y, Vongsouthi V, Gomez C, Larsen JS, Ardevol A, Jackson CJ. Protein Eng Des Sel 37 gzae009 (2024)
  23. Interfacial Reactions in Chemical Recycling and Upcycling of Plastics. Ong A, Teo JYQ, Lim JYC. ACS Appl Mater Interfaces 16 46975-46987 (2024)
  24. Opportunities and challenges for plastic depolymerization by biomimetic catalysis. Wu Y, Hu Q, Che Y, Niu Z. Chem Sci 15 6200-6217 (2024)
  25. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. RSC Adv 14 9943-9966 (2024)
  26. The structural and molecular mechanisms of type II PETases: a mini review. Duan S, Zhang N, Chao T, Wu Y, Wang M. Biotechnol Lett 45 1249-1263 (2023)
  27. Toward a Circular Bioeconomy: Designing Microbes and Polymers for Biodegradation. Mubayi V, Ahern CB, Calusinska M, O'Malley MA. ACS Synth Biol 13 1978-1993 (2024)

Articles citing this publication (80)