5xxv Citations

Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport.

Abstract

Kinesin-1, the founding member of the kinesin superfamily of proteins, is known to use only a subset of microtubules for transport in living cells. This biased use of microtubules is proposed as the guidance cue for polarized transport in neurons, but the underlying mechanisms are still poorly understood. Here, we report that kinesin-1 binding changes the microtubule lattice and promotes further kinesin-1 binding. This high-affinity state requires the binding of kinesin-1 in the nucleotide-free state. Microtubules return to the initial low-affinity state by washing out the binding kinesin-1 or by the binding of non-hydrolyzable ATP analogue AMPPNP to kinesin-1. X-ray fiber diffraction, fluorescence speckle microscopy, and second-harmonic generation microscopy, as well as cryo-EM, collectively demonstrated that the binding of nucleotide-free kinesin-1 to GDP microtubules changes the conformation of the GDP microtubule to a conformation resembling the GTP microtubule.

Articles - 5xxv mentioned but not cited (1)

  1. Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport. Shima T, Morikawa M, Kaneshiro J, Kambara T, Kamimura S, Yagi T, Iwamoto H, Uemura S, Shigematsu H, Shirouzu M, Ichimura T, Watanabe TM, Nitta R, Okada Y, Hirokawa N. J. Cell Biol. 217 4164-4183 (2018)


Reviews citing this publication (10)

  1. Axonal transport: Driving synaptic function. Guedes-Dias P, Holzbaur ELF. Science 366 eaaw9997 (2019)
  2. Molecular mechanisms underlying microtubule growth dynamics. Cleary JM, Hancock WO. Curr Biol 31 R560-R573 (2021)
  3. These motors were made for walking. Hunter B, Allingham JS. Protein Sci 29 1707-1723 (2020)
  4. Long-Range and Directional Allostery of Actin Filaments Plays Important Roles in Various Cellular Activities. Tokuraku K, Kuragano M, Uyeda TQP. Int J Mol Sci 21 (2020)
  5. Smart motors and cargo steering drive kinesin-mediated selective transport. Nabb AT, Frank M, Bentley M. Mol Cell Neurosci 103 103464 (2020)
  6. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Iwanski MK, Kapitein LC. Front Cell Dev Biol 11 1052245 (2023)
  7. Harmonic Generation Microscopy 2.0: New Tricks Empowering Intravital Imaging for Neuroscience. Lim H. Front Mol Biosci 6 99 (2019)
  8. Highly Specialized Mechanisms for Mitochondrial Transport in Neurons: From Intracellular Mobility to Intercellular Transfer of Mitochondria. Zaninello M, Bean C. Biomolecules 13 938 (2023)
  9. Mechanisms of microtubule organization in differentiated animal cells. Akhmanova A, Kapitein LC. Nat Rev Mol Cell Biol (2022)
  10. Micron-scale geometrical features of microtubules as regulators of microtubule organization. Mani N, Wijeratne SS, Subramanian R. Elife 10 e63880 (2021)

Articles citing this publication (30)

  1. Modulation of Kinesin's Load-Bearing Capacity by Force Geometry and the Microtubule Track. Pyrpassopoulos S, Shuman H, Ostap EM. Biophys J 118 243-253 (2020)
  2. A kinesin-1 variant reveals motor-induced microtubule damage in cells. Budaitis BG, Badieyan S, Yue Y, Blasius TL, Reinemann DN, Lang MJ, Cianfrocco MA, Verhey KJ. Curr Biol 32 2416-2429.e6 (2022)
  3. Kinesin-5 Promotes Microtubule Nucleation and Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin. Chen GY, Cleary JM, Asenjo AB, Chen Y, Mascaro JA, Arginteanu DFJ, Sosa H, Hancock WO. Curr Biol 29 2259-2269.e4 (2019)
  4. Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends. Serra-Marques A, Martin M, Katrukha EA, Grigoriev I, Peeters CA, Liu Q, Hooikaas PJ, Yao Y, Solianova V, Smal I, Pedersen LB, Meijering E, Kapitein LC, Akhmanova A. Elife 9 e61302 (2020)
  5. Self-repair protects microtubules from destruction by molecular motors. Triclin S, Inoue D, Gaillard J, Htet ZM, DeSantis ME, Portran D, Derivery E, Aumeier C, Schaedel L, John K, Leterrier C, Reck-Peterson SL, Blanchoin L, Théry M. Nat Mater 20 883-891 (2021)
  6. ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain-of-function. Pant DC, Parameswaran J, Rao L, Loss I, Chilukuri G, Parlato R, Shi L, Glass JD, Bassell GJ, Koch P, Yilmaz R, Weishaupt JH, Gennerich A, Jiang J. EMBO Rep 23 e54234 (2022)
  7. Modeling spatiotemporally varying protein-protein interactions in CyLaKS, the Cytoskeleton Lattice-based Kinetic Simulator. Fiorenza SA, Steckhahn DG, Betterton MD. Eur Phys J E Soft Matter 44 105 (2021)
  8. Lattice defects induced by microtubule-stabilizing agents exert a long-range effect on microtubule growth by promoting catastrophes. Rai A, Liu T, Katrukha EA, Estévez-Gallego J, Manka SW, Paterson I, Díaz JF, Kapitein LC, Moores CA, Akhmanova A. Proc Natl Acad Sci U S A 118 e2112261118 (2021)
  9. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. Cuveillier C, Delaroche J, Seggio M, Gory-Fauré S, Bosc C, Denarier E, Bacia M, Schoehn G, Mohrbach H, Kulić I, Andrieux A, Arnal I, Delphin C. Sci Adv 6 eaaz4344 (2020)
  10. Altered proteomics profile in the amnion of patients with oligohydramnios. Cheung CY, Brace RA. Physiol Rep 8 e14381 (2020)
  11. Backstepping Mechanism of Kinesin-1. Toleikis A, Carter NJ, Cross RA. Biophys J 119 1984-1994 (2020)
  12. Interplay between the Kinesin and Tubulin Mechanochemical Cycles Underlies Microtubule Tip Tracking by the Non-motile Ciliary Kinesin Kif7. Jiang S, Mani N, Wilson-Kubalek EM, Ku PI, Milligan RA, Subramanian R. Dev Cell 49 711-730.e8 (2019)
  13. Long-range, through-lattice coupling improves predictions of microtubule catastrophe. Kim T, Rice LM. Mol. Biol. Cell 30 1451-1462 (2019)
  14. Microtubule Dumbbells to Assess the Effect of Force Geometry on Single Kinesin Motors. Pyrpassopoulos S, Shuman H, Ostap EM. Methods Mol Biol 2478 559-583 (2022)
  15. Modeling a disease-correlated tubulin mutation in budding yeast reveals insight into MAP-mediated dynein function. Denarier E, Ecklund KH, Berthier G, Favier A, O'Toole ET, Gory-Fauré S, De Macedo L, Delphin C, Andrieux A, Markus SM, Boscheron C. Mol Biol Cell 32 ar10 (2021)
  16. Motor guidance by long-range communication on the microtubule highway. Wijeratne SS, Fiorenza SA, Neary AE, Subramanian R, Betterton MD. Proc Natl Acad Sci U S A 119 e2120193119 (2022)
  17. Multiomics analyses of vesicular transport pathway-specific transcripts and proteins in ovine amnion: responses to altered intramembranous transport. Cheung CY, Anderson DF, Brace RA. Physiol Genomics 51 267-278 (2019)
  18. Nano-positioning and tubulin conformation contribute to axonal transport regulation of mitochondria along microtubules. Van Steenbergen V, Lavoie-Cardinal F, Kazwiny Y, Decet M, Martens T, Verstreken P, Boesmans W, De Koninck P, Vanden Berghe P. Proc Natl Acad Sci U S A 119 e2203499119 (2022)
  19. Structural model of microtubule dynamics inhibition by kinesin-4 from the crystal structure of KLP-12 -tubulin complex. Taguchi S, Nakano J, Imasaki T, Kita T, Saijo-Hamano Y, Sakai N, Shigematsu H, Okuma H, Shimizu T, Nitta E, Kikkawa S, Mizobuchi S, Niwa S, Nitta R. Elife 11 e77877 (2022)
  20. A live-cell marker to visualize the dynamics of stable microtubules throughout the cell cycle. Jansen KI, Iwanski MK, Burute M, Kapitein LC. J Cell Biol 222 e202106105 (2023)
  21. Causes, costs and consequences of kinesin motors communicating through the microtubule lattice. Verhey KJ, Ohi R. J Cell Sci 136 jcs260735 (2023)
  22. Estimation of crossbridge-state during cardiomyocyte beating using second harmonic generation. Fujita H, Kaneshiro J, Takeda M, Sasaki K, Yamamoto R, Umetsu D, Kuranaga E, Higo S, Kondo T, Asano Y, Sakata Y, Miyagawa S, Watanabe TM. Life Sci Alliance 6 e202302070 (2023)
  23. KLC4 shapes axon arbors during development and mediates adult behavior. Haynes EM, Burnett KH, He J, Jean-Pierre MW, Jarzyna M, Eliceiri KW, Huisken J, Halloran MC. Elife 11 e74270 (2022)
  24. Local changes in microtubule network mobility instruct neuronal polarization and axon specification. Burute M, Jansen KI, Mihajlovic M, Vermonden T, Kapitein LC. Sci Adv 8 eabo2343 (2022)
  25. Microtubule detyrosination by VASH1/SVBP is regulated by the conformational state of tubulin in the lattice. Yue Y, Hotta T, Higaki T, Verhey KJ, Ohi R. Curr Biol 33 4111-4123.e7 (2023)
  26. Microtubule lattice spacing governs cohesive envelope formation of tau family proteins. Siahaan V, Tan R, Humhalova T, Libusova L, Lacey SE, Tan T, Dacy M, Ori-McKenney KM, McKenney RJ, Braun M, Lansky Z. Nat Chem Biol 18 1224-1235 (2022)
  27. Plus and minus ends of microtubules respond asymmetrically to kinesin binding by a long-range directionally driven allosteric mechanism. Vu HT, Zhang Z, Tehver R, Thirumalai D. Sci Adv 8 eabn0856 (2022)
  28. Preference of CAMSAP3 for expanded microtubule lattice contributes to stabilization of the minus end. Liu H, Shima T. Life Sci Alliance 6 e202201714 (2023)
  29. Second harmonic generation polarization microscopy as a tool for protein structure analysis. Kaneshiro J, Okada Y, Shima T, Tsujii M, Imada K, Ichimura T, Watanabe TM. Biophys Physicobiol 16 147-157 (2019)
  30. Taxol acts differently on different tubulin isotypes. Chew YM, Cross RA. Commun Biol 6 946 (2023)