5yud Citations

Structural basis for specific flagellin recognition by the NLR protein NAIP5.

OpenAccess logo Cell Res 28 35-47 (2018)
Cited: 33 times
EuropePMC logo PMID: 29182158

Abstract

The nucleotide-binding domain- and leucine-rich repeat (LRR)-containing proteins (NLRs) function as intracellular immune receptors to detect the presence of pathogen- or host-derived signals. The mechanisms of how NLRs sense their ligands remain elusive. Here we report the structure of a bacterial flagellin derivative in complex with the NLR proteins NAIP5 and NLRC4 determined by cryo-electron microscopy at 4.28 Å resolution. The structure revealed that the flagellin derivative forms two parallel helices interacting with multiple domains including BIR1 and LRR of NAIP5. Binding to NAIP5 results in a nearly complete burial of the flagellin derivative, thus stabilizing the active conformation of NAIP5. The extreme C-terminal side of the flagellin is anchored to a sterically constrained binding pocket of NAIP5, which likely acts as a structural determinant for discrimination of different bacterial flagellins by NAIP5, a notion further supported by biochemical data. Taken together, our results shed light on the molecular mechanisms underlying NLR ligand perception.

Articles - 5yud mentioned but not cited (7)

  1. KnotProt 2.0: a database of proteins with knots and other entangled structures. Dabrowski-Tumanski P, Rubach P, Goundaroulis D, Dorier J, Sulkowski P, Millett KC, Rawdon EJ, Stasiak A, Sulkowska JI. Nucleic Acids Res 47 D367-D375 (2019)
  2. Mechanism of NAIP-NLRC4 inflammasome activation revealed by cryo-EM structure of unliganded NAIP5. Paidimuddala B, Cao J, Nash G, Xie Q, Wu H, Zhang L. Nat Struct Mol Biol 30 159-166 (2023)
  3. Whole-Exome Sequencing of Patients With Posterior Segment Uveitis. Li AS, Velez G, Darbro B, Toral MA, Yang J, Tsang SH, Ferguson PJ, Folk JC, Bassuk AG, Mahajan VB. Am J Ophthalmol 221 246-259 (2021)
  4. Bad germs are trapped. Zhang L, Wu H. Cell Res 28 141-142 (2018)
  5. research-article Structural basis for flagellin induced NAIP5 activation. Paidimuddala B, Cao J, Zhang L. bioRxiv 2023.06.13.544801 (2023)
  6. Structural basis for flagellin-induced NAIP5 activation. Paidimuddala B, Cao J, Zhang L. Sci Adv 9 eadi8539 (2023)
  7. Structural basis of the human NAIP/NLRC4 inflammasome assembly and pathogen sensing. Matico RE, Yu X, Miller R, Somani S, Ricketts MD, Kumar N, Steele RA, Medley Q, Berger S, Faustin B, Sharma S. Nat Struct Mol Biol 31 82-91 (2024)


Reviews citing this publication (16)

  1. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Zheng D, Liwinski T, Elinav E. Cell Discov 6 36 (2020)
  2. Innate Sensors Trigger Regulated Cell Death to Combat Intracellular Infection. Nozaki K, Li L, Miao EA. Annu Rev Immunol 40 469-498 (2022)
  3. ATP-Binding and Hydrolysis in Inflammasome Activation. Sandall CF, Ziehr BK, MacDonald JA. Molecules 25 E4572 (2020)
  4. Structures and functions of the inflammasome engine. Wang L, Sharif H, Vora SM, Zheng Y, Wu H. J Allergy Clin Immunol 147 2021-2029 (2021)
  5. Structural Insights into the Plant Immune Receptors PRRs and NLRs. Wang J, Chai J. Plant Physiol 182 1566-1581 (2020)
  6. Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors. Lacey CA, Miao EA. Cold Spring Harb Perspect Biol 12 a036459 (2020)
  7. Therapeutic implications of inflammasome in inflammatory bowel disease. Khatri V, Kalyanasundaram R. FASEB J 35 e21439 (2021)
  8. Structural and mechanistic elucidation of inflammasome signaling by cryo-EM. Shen C, Sharif H, Xia S, Wu H. Curr Opin Struct Biol 58 18-25 (2019)
  9. Novel aspects of the assembly and activation of inflammasomes with focus on the NLRC4 inflammasome. Fusco WG, Duncan JA. Int Immunol 30 183-193 (2018)
  10. Activation and regulation mechanisms of NOD-like receptors based on structural biology. Ohto U. Front Immunol 13 953530 (2022)
  11. Molecular actions of NLR immune receptors in plants and animals. Wang J, Chai J. Sci China Life Sci 63 1303-1316 (2020)
  12. Structural aspects of the MHC expression control system. Nash G, Paidimuddala B, Zhang L. Biophys Chem 284 106781 (2022)
  13. Structural mechanisms of inflammasome regulation revealed by cryo-EM studies. Cao J, Nash G, Zhang L. Curr Opin Struct Biol 75 102390 (2022)
  14. Inflammasome: structure, biological functions, and therapeutic targets. Dai Y, Zhou J, Shi C. MedComm (2020) 4 e391 (2023)
  15. The role of inflammasomes in human diseases and their potential as therapeutic targets. Yao J, Sterling K, Wang Z, Zhang Y, Song W. Signal Transduct Target Ther 9 10 (2024)
  16. Mechanistic insights from inflammasome structures. Fu J, Schroder K, Wu H. Nat Rev Immunol (2024)

Articles citing this publication (10)

  1. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, Hauenstein AV, Wu Z, Núñez G, Mao Y, Wu H. Nature 570 338-343 (2019)
  2. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Martin R, Qi T, Zhang H, Liu F, King M, Toth C, Nogales E, Staskawicz BJ. Science 370 eabd9993 (2020)
  3. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Shen C, Li R, Negro R, Cheng J, Vora SM, Fu TM, Wang A, He K, Andreeva L, Gao P, Tian Z, Flavell RA, Zhu S, Wu H. Cell 184 5759-5774.e20 (2021)
  4. Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Li Y, Fu TM, Lu A, Witt K, Ruan J, Shen C, Wu H. Proc Natl Acad Sci U S A 115 10845-10852 (2018)
  5. Cryo-EM structures of the active NLRP3 inflammasome disc. Xiao L, Magupalli VG, Wu H. Nature 613 595-600 (2023)
  6. Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication. Naseer N, Egan MS, Reyes Ruiz VM, Scott WP, Hunter EN, Demissie T, Rauch I, Brodsky IE, Shin S. PLoS Pathog 18 e1009718 (2022)
  7. Cryo-EM studies of NAIP-NLRC4 inflammasomes. Haloupek N, Grob P, Tenthorey J, Vance RE, Nogales E. Methods Enzymol 625 177-204 (2019)
  8. Clostridioides difficile Flagellin Activates the Intracellular NLRC4 Inflammasome. Chebly H, Marvaud JC, Safa L, Elkak AK, Kobeissy PH, Kansau I, Larrazet C. Int J Mol Sci 23 12366 (2022)
  9. IgE Immune Complexes Mitigate Eosinophilic Immune Responses through NLRC4 Inflammasome. Oylumlu E, Uzel G, Durmus L, Ciraci C. Mediators Inflamm 2023 3224708 (2023)
  10. N-Lobe of TXNIP Is Critical in the Allosteric Regulation of NLRP3 via TXNIP Binding. Cheng F, Wang N. Front Aging Neurosci 14 893919 (2022)