6b46 Citations

Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex.

Abstract

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.

Reviews - 6b46 mentioned but not cited (3)

  1. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs. Trasanidou D, Gerós AS, Mohanraju P, Nieuwenweg AC, Nobrega FL, Staals RHJ. FEMS Microbiol Lett 366 fnz098 (2019)
  2. Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. Zhu Y, Zhang F, Huang Z. BMC Biol 16 32 (2018)
  3. Structural insights into the inactivation of the type I-F CRISPR-Cas system by anti-CRISPR proteins. Yang L, Zhang Y, Yin P, Feng Y. RNA Biol 18 562-573 (2021)


Reviews citing this publication (27)

  1. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  2. Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J. Nat Methods 17 471-479 (2020)
  3. Phage-Encoded Anti-CRISPR Defenses. Stanley SY, Maxwell KL. Annu Rev Genet 52 445-464 (2018)
  4. Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems. Davidson AR, Lu WT, Stanley SY, Wang J, Mejdani M, Trost CN, Hicks BT, Lee J, Sontheimer EJ. Annu Rev Biochem 89 309-332 (2020)
  5. Controlling and enhancing CRISPR systems. Shivram H, Cress BF, Knott GJ, Doudna JA. Nat Chem Biol 17 10-19 (2021)
  6. Structures and Strategies of Anti-CRISPR-Mediated Immune Suppression. Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. Annu Rev Microbiol 74 21-37 (2020)
  7. Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems. Hwang S, Maxwell KL. CRISPR J 2 23-30 (2019)
  8. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Jia N, Patel DJ. Nat Rev Mol Cell Biol 22 563-579 (2021)
  9. Protein Inhibitors of CRISPR-Cas9. Bondy-Denomy J. ACS Chem Biol 13 417-423 (2018)
  10. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Wang JY, Pausch P, Doudna JA. Nat Rev Microbiol 20 641-656 (2022)
  11. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Scapin G, Potter CS, Carragher B. Cell Chem Biol 25 1318-1325 (2018)
  12. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Liu TY, Doudna JA. J Biol Chem 295 14473-14487 (2020)
  13. Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems. Zhang F, Song G, Tian Y. Animal Model Exp Med 2 69-75 (2019)
  14. Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. Xue C, Sashital DG. EcoSal Plus 8 (2019)
  15. New paradigm of functional regulation by DNA mimic proteins: Recent updates. Wang HC, Chou CC, Hsu KC, Lee CH, Wang AH. IUBMB Life 71 539-548 (2019)
  16. Three New Cs for CRISPR: Collateral, Communicate, Cooperate. Varble A, Marraffini LA. Trends Genet 35 446-456 (2019)
  17. The Application of the CRISPR-Cas System in Antibiotic Resistance. Tao S, Chen H, Li N, Liang W. Infect Drug Resist 15 4155-4168 (2022)
  18. Digging into the lesser-known aspects of CRISPR biology. Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Int Microbiol 24 473-498 (2021)
  19. Types I and V Anti-CRISPR Proteins: From Phage Defense to Eukaryotic Synthetic Gene Circuits. Yu L, Marchisio MA. Front Bioeng Biotechnol 8 575393 (2020)
  20. In Silico Approaches for Prediction of Anti-CRISPR Proteins. Makarova KS, Wolf YI, Koonin EV. J Mol Biol 435 168036 (2023)
  21. Mechanisms regulating the CRISPR-Cas systems. Zakrzewska M, Burmistrz M. Front Microbiol 14 1060337 (2023)
  22. Microbiology catches the cryo-EM bug. Earl LA, Falconieri V, Subramaniam S. Curr Opin Microbiol 43 199-207 (2018)
  23. The biology and type I/III hybrid nature of type I-D CRISPR-Cas systems. McBride TM, Cameron SC, Fineran PC, Fagerlund RD. Biochem J 480 471-488 (2023)
  24. CRISPR-Cas adaptation in Escherichia coli. Mitić D, Bolt EL, Ivančić-Baće I. Biosci Rep 43 BSR20221198 (2023)
  25. Prospects and Challenges of Bacteriophage Substitution for Antibiotics in Livestock and Poultry Production. Jiang A, Liu Z, Lv X, Zhou C, Ran T, Tan Z. Biology (Basel) 13 28 (2024)
  26. The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors. Belato HB, Lisi GP. Biomolecules 13 264 (2023)
  27. The Post-Antibiotic Era: A New Dawn for Bacteriophages. Jin Y, Li W, Zhang H, Ba X, Li Z, Zhou J. Biology (Basel) 12 681 (2023)

Articles citing this publication (63)